Дисперсия и полоса пропускания.



По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме. Дисперсия[1] - уширение импульсов – имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины L по формуле . Обычно дисперсия нормируется в расчете на 1 км, и измеряется в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

· различие скоростей распространения направляемых мод (межмодовой дисперсией tmod),

· направляющими свойствами световодной структуры (волноводной дисперсией tw),

· свойствами материала оптического волокна (материальной дисперсией tmat).

 

 

 


Рис. 4.6. Виды дисперсии.

 

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну. Результирующая дисперсия t определяется из формулы:

 

(4-13)

Межмодовая дисперсия.

Межмодовая дисперсия возникает вследствие различной скорости распространения у мод, и имеет место только в многомодовом волокне. Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления ее можно вычислить соответственно по формулам:

 

, , (4-14), (4-15)

 

где Lс – длина межмодовой связи (для ступенчатого волокна порядка 5 км, для градиентного – порядка 10 км).

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L>Lc наступает установившейся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. Поэтому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от D значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания. При расчете полосы пропускания W можно воспользоваться формулой :

W=0,44/t                                                 (4-16)

 

Измеряется полоса пропускания в МГц км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смысл W – это максимальная частота (частота модуляции) передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом расстояния, то полоса пропускания зависит от расстояния обратно пропорционально.

Хроматическая дисперсия.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне из-за отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны:

 

               (4-17)

 

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны:

 

,                 (4-18)

 

где ведены коэффициенты М(l) и N(l) удельные материальная и волноводная дисперсии соответственно, а Dl (нм) – уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l)=М(l)+N(l). Удельная дисперсия имеет размерность пс/(нм км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310±10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация М(l) и В, а результирующая дисперсия D(l) обращается в ноль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l0. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l0 для данного конкретного волокна. Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 для SF и DSF) делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне. Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера: t(l)=А+Вl2+Сl-2. Коэффициенты А,В,С являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую t(l). Тогда удельная монохроматическая дисперсия вычисляется по формуле:

 

           (4-19)

 

где l0=(С/В)1/4 – длина волны нулевой дисперсии, новый параметр S0=8B – наклон нулевой дисперсии (размерность пс/(нм2 км), а l - рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

Для волокна со смещенной дисперсией эмпирическая формула временных задержек записывается в виде t(l)=А+Вl+Сllnl, а соответствующая удельная дисперсия определяется как

 

              (4-19)

 

со значениями параметров l0-(1+В/С) и S0=C/l0, где l - рабочая длина волны, l0 – длина волны нулевой дисперсии, и S0 – наклон нулевой дисперсии.

Хроматическая дисперсия связана с удельной хроматической дисперсией простым соотношением tchr(l)=D(l)Dl, где Dl - ширина спектра излучения источника. К уменьшению хроматической дисперсии ведет использование более когерентных источников излучения, например лазерных передатчиков (Dl@2 нм), и использование рабочей длины волны более близкой к длине волны нулевой дисперсии. В табл. 4.3. представлены дисперсионные свойства различных оптических волокон.

 

Табл. 4.3. Дисперсия оптических сигналов в различных оптических волокнах.

Тип волокна

l , нм

Межмодовая дисперсия, пс/км

t mod

Удельная хроматическая дисперсия, пс/(нм км)

D( l )

Результирующая удельная полоса пропускания, МГц км, W=0,44/ t

D l =2 нм D l =4 нм D l =35 нм

MMF

50/125

850 4141) 99,63) 958 766 125
1310 414 1,0 1062 1062 1050
1550 414 19,2 1058 1044 540

MMF

62,5/125

850 9732) 106,74) 441 414 114
1310 973 4,2 452 452 450
1550 973 17,3 451 450 384

SF

8/125

1310 0 <1,85) >120000 61000 6900
1550 0 17,5 12600 6300 720

DSF

8/125

1310 0 21,26) 10400 5200 594
1550 0 <1,7 >120000 6500 7400

 

 на основе формулы (4-14), D=0,013, n1=1,47

2) – на основе формулы (4-14), D=0,02, n1=1,46

3) – на основе формулы (4-19), l0=1297¸1316 нм, S0£0,101 пс/(нм2 км)

4) – на основе формулы (4-19), l0=1322¸1354 нм, S0£0,097 пс/(нм2 км)

5) – на основе формулы (4-19), l0=1301,5¸1321,5 нм, S0£0,092 пс/(нм2 км)

6) – на основе формулы (4-19), l0=1535¸1565 нм, S0£0,085 пс/(нм2 км)

Технические характеристики взяты у волокон, производимых фирмой Corning

Для того, чтобы при передаче сигнала сохранялось его приемлемое качество – соотношение сигнал/шум было не ниже определенного значения‑необходимо, чтобы полоса пропускания волокна на длине волны передачи превосходила частоту модуляции. Ниже приводятся пример расчета допустимой длины сегмента с использованием табл. 4.3.

Расчет: Стандарт Fast Ethernet для многомодового волокна. Оптический интерфейс 100Base-FX предполагает кодировку 4В/5В с частотой модуляции 125 МГц. При использовании светодиодов с Dl=35 нм (1310 нм) удельная полоса пропускания для волокна 62,5/125 составляет 450 МГц км, и при длине оптического сегмента 2 км будет 225, что больше 125 МГц, то есть с точки зрения дисперсии, протяженность в 2 км является допустимой, что находится в полном соответствии со стандартом Fast Ethernet на многомодовое волокно. Слабая зависимость полосы пропускания многомодового волокна (например 62,5/125) от спектральной ширины источника излучения, работающего на длине волны 1310 нм (450 МГц км при Dl=35 нм, и 452 МГц км при Dl=2 нм), объясняется незначительной долей хроматической дисперсией по сравнению с межмодовой в силу близости рабочей длины волны к длине волны нулевой дисперсии. Таким образом, технические требования к спектральной полосе оптических передатчиков для работы по многомодовому волокну на длине 1310 нм обычно слабые.


Дата добавления: 2018-09-22; просмотров: 411; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!