Осветительная часть микроскопа.



Занятие №1.

Методы клеточной биологии.

I . Световая микроскопия.

Световой микроскоп.

Микроскоп (от лат. micros — малый и scopein — рассматривать, наблюдать) — прибор, позволяющий получать увеличенное изображение объектов и структур, недоступных глазу человека. Изобретение микроскопа обусловлено скачком в развитии оптики в XVI-XVII вв. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с чем, первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285г. В XVI веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы. Тогда же в Нидерландах потомственные оптики Захарий и Ханс Янсены (1590г.) смонтировали две выпуклые линзы внутри одной трубки, т. е. фактически создав первый микроскоп и заложив основы для создания сложных микроскопов.

Простые микроскопы появились в XVII в. Больших успехов в их изготовлении добился голландский ученый А. Левенгук. 1683 год можно считать годом рождения науки о микроорганизмах - микробиологии. В этот год в голландском городе Делфте Антони ван Левенгук впервые увидел бактерии, о чем сообщил письмом в самое авторитетное научное учреждение того времени - Лондонское королевское общество.

В 1609—1610 гг. сложный микроскоп был построен Г. Галилеем (1564—1642). В 1846г. немецкий механик Карл Цейсе (1816—1888) открыл мастерскую и через год приступил к изготовлению микроскопов. Карл Цейсе успешно использовал в деятельности своей фирмы ZEISS открытия профессора физики Эрнста Аббе, который впоследствии становится его полноправным компаньоном. Теоретические и практические работы Эрнста Аббе (1840—1905), Отто Шотта (1851 — 1935) и Августа Келера (1866—1948) определили направление развития и принципы построения оптических систем современных микроскопов.

Строение светового микроскопа.

 Современный микроскоп состоит из следующих конструктивно-технологических частей: оптической, механической и осветительной.

 

Механическая часть микроскопа.

Основным конструктивно-механическим блоком микроскопа является штатив. Штатив включает в себя следующие основные блоки: основание и тубусодержатель. Основание представляет собой блок, на котором крепится весь микроскоп. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания. Тубусодержатель представляет собой блок, на котором закрепляются следующие части.

1. Узел смены объективов, имеющий следующие варианты исполнения — револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих. Револьверное устройство обеспечивает точную установку микрообъективов в совмещенном оптическом тракте между осветительной и наблюдательной системами микроскопа. Смена объективов производится вращением рифленого кольца револьверного устройства до фиксированного положения.

 

2. Фокусировочный механизм грубой и точной настройки микроскопа на резкость — механизм фокусировочного перемещения объективов или столиков. Фокусировочный механизмявляется одним из важнейших узлов современного микроскопа. От качества его исполнения зависит точность и воспроизводимость фокусировки микроскопа на объект. Механизм расположен в штативе микроскопа и обеспечивает вертикальное перемещение предметного столика, который закреплен винтом в специальном кронштейне. Рукоятки расположены на одной оси и выведены с обеих сторон корпуса тубусодержателя. Грубое перемещение кронштейна с предметным столиком осуществляется рукоятками большего диаметра, точное перемещение – рукоятками меньшего диаметра. Общая величина грубой фокусировки составляет не менее 30 мм. Общая величина точной фокусировки - не менее 2.5 мм.

 

3. Узел крепления сменных предметных столиков. Предметный столик предназначен для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

 

4. Узел крепления, а также фокусировочного и центрировочного перемещения конденсора. Конденсорное устройство устанавливается в специальный кронштейн и в фиксированное положение и закрепляется стопорным винтом. В конструкции кронштейна предусмотрены специальные юстировочные винты, предназначенные для перемещения конденсорного устройства в плоскости, перпендикулярной оптической оси микроскопа, при его центрировке. В конструкции микроскопа предусмотрен механизм перемещения конденсора вдоль оптической оси прибора для обеспечения оптимальной фокусировки осветительных лучей. К кронштейну конденсорного устройства снизу закреплена винтом специальная откидная оправа, предназначенная для установки сменных светофильтров.

 

5. Узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств). Так, например, бинокулярная насадка, служащая для организации визуального наблюдения на микроскопе, устанавливается в гнездо насадок тубусодержателя и закрепляется специальным винтом. Посредством разворота окулярных трубок относительно оси шарнира имеется возможность установки требуемого расстояние между осями окулярных трубок от 56 до 72 мм в соответствии с глазной базой конкретного исследователя. Левая окулярная трубка может быть снабжена механизмом перемещения окуляров в пределах ± 5 дптр. для компенсации ошибки глаза исследователя.

 

Оптическая часть микроскопа.

Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

 

ОБЪЕКТИВЫ.

Объективы микроскопа представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз. Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14. Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

Маркировка объективов. Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

· увеличение («х»-крат, раз): 8х, 40х, 90х;

· числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;

· дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), люминесцентный — Л (L), и т.п. пример: 40х/0,65 Ф или Ph2 40x/0,65;

· длина тубуса (160 или  — «бесконечность») и через косую черту указывается толщина покровного стекла (0,17; 0 или «—», последнее указывается, если объектив работает как с покровным, так и без покровного стекла), пример: 40х/0,65 Ф; 160/0,17 или Ph2 40x/0,65; /-;

· тип иммерсии с обязательной маркировкой цветным кольцом, расположенным ближе к фронтальному компоненту — МИ (oil) — черное кольцо, ВИ (W) — белое кольцо, ГИ (Glyc) — оранжевое кольцо;

· фирма-изготовитель, заводской номер или децимальный номер по каталогу.

ОКУЛЯРЫ.

Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта. Современная маркировка окуляров предусматривает кроме указания линейного увеличения окуляра, размер видимого поля изображения (линейное поле в мм): Юх/18. Маркировка наносится на фронтальную (переднюю) часть окуляра или по верхней образующей корпуса окуляра.

Осветительная часть микроскопа.

Осветительная система микроскопа представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.

 

 

КОНДЕНСОР.

Если освещаемый предмет находится на конечном расстоянии, то для его освещения используют конденсор. Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света). Часто конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси. При конденсоре может находится осветительная апертурная ирисовая диафрагма. На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).


Дата добавления: 2018-09-22; просмотров: 3086; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!