Масштабирование как закон перехода от лаборатории к производству.



   Масштабирование — это воспроизведение результатов, полученных на оборудовании одного размера (или одной конструкции), при проведении того же процесса в аппаратах другого (обычно большего) размера или другой конструкции.

Технология производственного процесса отрабатывается поэтапно в лабораторных, пилотных и промышленных установках. На каждом этапе используются ферментеры различных объёмов: на лабораторном этапе – от 0,5 до 100 литров, на пилотном этапе – от 100 до 5000 литров, на промышленном этапе – от 5000 до 1000000 литров.

На каждом этапе увеличения масштаба ферментации (процесса) - масштабном переходе (масштабировании биотехнологического процесса) - решаются конкретные задачи отработки (налаживания) производства и его оптимизации.

Лабораторные ферментеры по устройству и форме напоминают промышленные и подразделяются на те же типы. Правда, в лабораторных масштабах наиболее часто применяются аппараты с механическим перемешиванием. По принципу теплообмена и стерилизации они делятся на две категории. К первой относятся лишенные собственных систем теплообмена и стерилизации. Такие аппараты, по сути дела, представляют собой камеры для культивирования, помещаемые в водяные бани и стерилизуемые в автоклавах. Аппараты второй категории снабжены системами теплообмена и стерилизации, принципиально не отличающимися от таковых промышленных установок. С помощью лабораторных биореакторов решаются следующие задачи:

1) кинетические - определение скорости роста клеток, эффективность утилизации субстратов и образования целевого продукта;

2) некоторые массообменные - расчет коэффициентов массопередачи, скорость поступления в среду О2и других газов, скорость освобождения от газообразных продуктов, образующихся при культивировании продуцентов (в первую очередь СО2);

3) определение коэффициентов реакций, связывающих утилизируемые субстраты и О2 с получаемыми целевым и побочными продуктами.

Пилотные установки используют для поиска (отсюда и название) наиболее целесообразных технологий и в общих чертах моделирование промышленного процесса. Поэтому на данном этапе стараются применять тот тип аппарата, который предполагается использовать в промышленном масштабе. Иными словами, отрабатываются все аспекты производства, вплоть до штатных вопросов.

При масштабных переходах следует постоянно иметь в виду, что при соблюдении одинаковых условий (среда, тип аппарата, температура и рН, скорость перемешивания) уровень и скорость синтеза целевого продукта могут существенно различаться ситуация, очень четко прослеженная еще в 1940-1950 гг. при организации крупномасштабных производств антибиотиков. Вследствие сказанного при переходе от лабораторных к пилотным, а затем от пилотных к промышленным установкам, приходится наряду с объемом изменять и конструкцию, и режимы работы аппаратов. Центральной проблемой при этом является подбор надежных критериев масштабирования, обеспечивающих разработку высокоэффективных и экономичных технологий промышленного производства целевого продукта.

 

Элементы, слагающие биотехнологию. Особенности процессов наращивания биомассы, а также очистки продукта.

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности. Эти технологии базируются на использовании каталитического потенциала различных биологических агентов и систем – микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток.

Современный этап научно-технического прогресса характеризуется революционными изменениями в биологии, которая становится лидером естествознания. Биология вышла на молекулярный и субклеточный уровень, в ней интенсивно применяются методы смежных наук (физики, химии, математики, кибернетики и др.), системные подходы. Бурное развитие комплекса наук биологического профиля с расширением практической сферы их применения обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством второй половины ХХ века, как дефицит чистой воды и пищевых веществ (в особенности белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому возникла острая необходимость в разработке и внедрение принципиально новых методов и технологий. Большая роль в решение комплекса этих проблем отводится биотехнологии, в рамках которой осуществляется целевое применение биологических систем и процессов в различных сферах человеческой деятельности. В современной биотехнологии в соответствии со спецификой сфер ее применения целесообразно выделить в качестве самостоятельных разделов следующие:

- Промышленная микробиология.

- Медицинская биотехнология.

- Технологическая биоэнергетика.

- Сельскохозяйственная биотехнология.

- Биогидрометаллургия.

- Инженерная энзимология.

- Клеточная и генетическая инженерия

- Экологическая биотехнология.

 

В общем виде любой биотехнологический процесс включает три основные стадии: предферментационную, ферментационную и постферментационную.

 

На предферментационной стадииосуществляют хранение и подготовку культуры продуцента (инокулята), получение и подготовку питательных субстратов и сред, ферментационной аппаратуры, технологической и рециркулируемой воды и воздуха.

 

Стадия ферментацииявляется основной стадией в биотехнологическом процессе, так как в ее ходе происходит взаимодействие продуцента с субстратом и образование целевых продуктов (биомасс, эндо- и экзопродуктов). Эта стадия осуществляется в биохимическом реакторе (ферментере) и может быть организована в зависимости от особенностей используемого продуцента и требований к типу и качеству конечного продукта различными способами. Ферментация может проходить в строго асептических условиях и без соблюдения правил стерильности (так называемая незащищенная ферментация); на жидких и на твердых средах; анаэробно и аэробно. Аэробная ферментация, в свою очередь, может протекать поверхностно или глубинно (во всей толще питательной среды).

 

Постферментационная стадияобеспечивает получение готовой товарной продукции и также, что не менее важно, обезвреживание отходов и побочных продуктов.

 

Первым этапом на пути к очистке целевого продукта является разделение культуральной жидкости и биомассы – сепарация. Существуют различные методы сепарации:

 

1) флотация, если клетки продуцента в биореакторе из-за низкой смачиваемости накапливаются в поверхностных слоях жидкости;

2) фильтрация на пористой фильтрующей перегородке;

3) центрифугирование. Метод основан на осаждении взвешенных в жидкости частиц с применением центробежной силы. Ценрифугирование требует более дорогостоящего оборудования, чем фильтрование. Поэтому оно оправдывает себя, если: а) суспензия фильтруется медленно; б) поставлена задача максимального освобождения культуральной жидкости от содержащихся частиц; в) необходимо наладить непрерывный процесс сепарации в условиях, когда фильтры рассчитаны только на периодическое действие.

Центрифугирование и фильтрация в некоторых производственных процессах реализуются в комбинации – речь идет о фильтрационных центрифугах. Широко применяют центрифуги, где разделение жидкой и твердой фаз не связано с фильтрацией и основано лишь на центробежной силе.

Следующим этапом получение целевого продукта является разрушение клеток. Разрушение клеток (дезинтеграцию) проводят физическим, химическим и химико-ферментативным методами. Наибольшее индустриальное значение имеет физическое разрушение: ультразвуком; с помощью вращающихся лопастей или вибраторов – метод, обычно используемый в пилотных и промышленных установках; встряхиванием со стеклянными бусами; продавливанием через узкое отверстие под высоким давлением; раздавливанием замороженной клеточной массы; растиранием в ступке; осмотическим шоком; замораживанием – оттаиванием; сжатием клеточной суспензии с последующим резким снижением давления (декомпрессия).

За дезинтеграцией клеток следует этап отделения фрагментов клеточных стенок. Используют те же методы, что и при сепарации клеток: центрифугирование или фильтрацию. Однако применяют более высокоскоростные центрифуги и фильтры с меньшим диаметром пор (часто мембранные), чем при сепарации клеток. В большинстве биотехнологических процессов клеточные стенки отбрасывают, как балласт, но возможно и промышленное получение компонентов клеточных стенок как целевого продукта.

 


Дата добавления: 2018-08-06; просмотров: 1526; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!