История Петруса Гонсальвуса и Схве Маонга



 

Бледнолицые, и тем гордящиеся, европейские антропологи XIX столетия привычно делили человечество на группы по цвету кожи. Ученые из других регионов, что, наверное, неудивительно, смотрели на вещи по-иному. По возвращении из европейского турне китайский ученый Чжан Дейи (1847-1919) сообщал своим соотечественникам, что у многих французских женщин длинные бороды и усы. Избегая географических классификаций по цвету кожи, китайские антропологи, в отличие от своих европейских коллег, создавали карты, на которых народы мира изображались по степени обволошенности. Китайцев изумляли айны, народ на севере Японии с довольно развитым волосяным покровом, которых они относили к расе карликовых обезьянолюдей. Разумеется, айны ничем таким не являются. Мужчины айны действительно гордятся длиной своих кудрей на голове и бород (которых они, кстати, никогда не стригут), хотя в целом количество волос на теле у них не больше, чем у многих европейцев. Но ведь ученые комментаторы эпохи Цин и европейских визитеров сравнивали с макаками, и эта милая традиция по сей день сохраняется в Сингапуре, где иностранцев называют ангмо (angmo)  или ангмогао (angmogao) , что в переводе с языка хоккейн значит "рыжая обезьяна".[244]

Наверное, не совсем справедливо обвинять одних китайцев в пристрастии к определению степени волосатости (в конце концов, едва ли приходится сомневаться, что именно белые южноафриканцы придумали "карандашный тест"). Европейцы действительно могли быть волосатыми, но это никогда не делало их особо симпатизирующими людям, у которых волос было еще больше, чем у них. Целый ряд генетических нарушений, называемых "гипертрихозами", вызывает у детей развитие обширного волосяного покрова на носах, лбах, щеках и ушах, конечностях и торсе, то есть на тех частях тела, которые у младенцев обычно остаются едва прикрытыми. Вырастая, эти дети превращались в диких людей (Waldmenschen)  или дикарок (femmes sauvages),  о которых сообщали первые путешественники; в примитивных людей (hommes primitives)  или волосатых людей (Homo hirsutus)  в классификациях таксономистов; в собако-, медведе-, обезьяноподобных или львинообразных людей ярмарочных балаганов.

В собрании Музея Каподимонте в Неаполе хранится картина Агостино Караччи, старшего из болонских братьев-художников. По краям полотна расположены две фигуры: забавный карлик и бородатый ухмыляющийся мужчина средних лет. Их внимание приковано к третьему персонажу: молодому, хорошо сложенному и спокойному человеку, сидящему между ними. Это, судя по всему, дикий, лесной человек. Не считая легкой накидки, на нем нет никакой одежды; лицо его покрыто волосами – не просто боровой, а длинными прядями, которые растут и на щеках и на лбу. Пышная растительность, составляющая фон картины, а также попугай, две обезьянки и две собаки довершают буколическую сценку. Всю картину можно было бы принять за аллегорию Природы, если бы не ее название – "Волосатый Арриго, безумный Петр и карлик Амон", которое говорит нам, что в действительности это перечень обитателей зоопарка.

 

 

Ланугинозный гипертрихоз. Арриго Гонсальвус, Рим, 1599 г.

Деталь картины Агостино Караччи "Волосатый Арриго, безумный Петр и карлик Амон" (Музей Каподимонте, Неаполь).

 

Картина, написанная по заказу кардинала Одоардо Фарнезе, была закончена в 1599 году. По сравнению с великолепными интерьерами Палаццо Фарнезе в Риме, которые уже создали для него братья Караччи, это была всего лишь мелочь, небольшой пустячок. Рядом с дворцом, где сейчас помещается французское посольство, находился ботанический сад и маленький зверинец, питомцы которого почти наверняка и послужили моделями для коллективного портрета. Дикий человек, подаренный кардиналу его родственником Рануччо Фарнезе, также жил в зверинце. Его статус и происхождение можно определить по одежде. На нем тамарко –  накидка гуанчей, некогда населявших остров Тенерифе в Канарском архипелаге, которые в дальнейшем были быстро порабощены и в основном уничтожены захватившими их около сотни лет назад испанцами.

Арриго Гонсальвус – таким было полное имя дикого человека – сам не относился к гуанчам. Однако он был сыном одного из представителей этого племени, притом весьма необычного. В 1556 году при дворе французского короля Генриха II появился Петрус Гонсальвус, возможно привезенный туда как раб с Тенерифе. Ему, должно быть, было не более двенадцати лет, но густая шерсть уже скрывала черты его лица. С ним как будто бы неплохо обращались и даже дали ему какое-то образование. В 1559 году после смерти короля Гонсальвус появляется при дворе Маргариты, герцогини Пармской, деспотичной правительницы Испанских Нидерландов. Там он женится на молоденькой и весьма хорошенькой голландочке, которая родила ему, как минимум, четверых детей, трое из которых, в том числе и Арриго, также были чрезмерно волосатыми.

В 1582 году Маргарита Пармская вернулась в Италию вслед за ней отправились и члены волосатой семьи. Их считали чудом, природной диковинкой, которая не могла оставить равнодушными Габсбургов и Фарнезе. Эрцгерцог Фердинанд II Тирольский заказал серию отдельных портретов для своей Комнаты чудес (Wunderkammer)  в замке Амбрас возле Инсбрука. Там их можно увидеть и по сей день в его коллекции других природных чудес. Групповой портрет членов семьи, выполненный Георгом Хофнагелом, появляется в иллюстрированном "Бестиарии" Рудольфа II, австрийского императора и племянника Фердинанда. Это были единственные люди, изображенные в книге. Вероятно, самый привлекательный из многих портретов членов этого замечательного семейства принадлежит кисти болонской художницы Лавинии Фонтана. Это портрет младшей сестры Арриго – Тоньины, на котором изображена маленькая волосатая девочка в серебристом кружевном платье. Она мило улыбается, держа в руках бумагу с описанием семейной истории, и напоминает необычно умную и очень приветливую кошечку.

Альдрованди говорит о Петрусе Гонсальвусе как о "диком человеке" с Канарских островов и высказывает твердое убеждение, что там существуют и другие люди, подобные семье Гонсальвус, – раса волосатых людей. Конечно, ее не существовало. Петрус Гонсальвус был всего-навсего человеком, родившимся с мутацией, которая вызывала рост волос на таких частях лица и тела, какие у большинства людей остаются необволошенными. О дальнейшей судьбе Петруса, его жены и сына ничего не известно. Мы знаем, однако, что дочь Петруса Тоньина в конце концов вышла замуж и родила несколько детей, столь же волосатых, как и она сама.

 

 

Ланугинозный гипертрихоз. Петрус Гонсальвус, Австрия, ок. 1582 г.

Неизвестный художник немецкой школы (собрание замка Шлосс / Музей истории искусств, Вена).

 

Можно было бы подумать, что все портреты преувеличивают семейную предрасположенность к росту волос, однако это вовсе не так. Подробности путешествия семьи Гонсальвус по Северной Италии были зафиксированы тем самым Улиссе Альдрованди, неутомимым знатоком природы, который в то время занимал пост профессора естественной истории в Папском университете Болоньи. В своей "Истории монстров" он рассказывает о встречах с семьей, тщательно описывает особенности ее членов и приводит четыре ксилографических портрета. Некоторые специалисты полагают что в облике безумного Петра, который не сводит глаз с волосатого человека на картине Агостино Караччи, изображен сам Альдрованди. В поддержку этой очаровательной причуды может свидетельствовать тот факт, что бородач действительно похож на Альдрованди. Кроме того, художник и естествоиспытатель знали друг друга со студенческой скамьи. Но в 1599 году Альдрованди уже почти исполнилось семьдесят, а безумный Петр явно пребывает в расцвете сил.[245]

 

Петрус Гонсальвус и его семья были не единственными людьми с гирсутизмом, вызывавшими любопытство у королей. В 1826 году Джон Крафорд, британский дипломат и естествоиспытатель, посетил бирманскую столицу Ава, к северу от Мандалая. На троне восседал Баджидо из династии Конбаунов, которая была знаменита в основном своими дикими приемами борьбы за власть. (Один из предшественников Баджидо ознаменовал свое восхождение на престол в 1782 году тем, что уничтожил своих братьев, их семьи и несколько сот подданных, устроив из них гигантский погребальный костер.) Конбауны были также экспансионистами, и их политика вызывала ярость доминирующей в этом регионе силы в лице британского правительства в Индии. После 1-й Англо-бирманской войны бирманцам пришлось принять условия унизительного мира. Договор был привезен в Аву Крафордом, который застал при дворе Баджидо сцены средневековой пышности с участием белых слонов и людей-альбиносов.

Там же он увидел и Схве Маонга. Крафорд писал:

 

Мы были много наслышаны об особе, будто бы покрытой волосами, которая, как утверждали, больше походила на обезьяну, чем на человеческое существо; это описание, однако, как я рад сообщить, совершенно не соответствовало его внешности... Весь лоб, щеки, веки, нос, в том числе и внутренняя его часть, подбородок – короче, все лицо за исключением красноватой части губ, было покрыто у этого человека мягкими волосами. На лбу и щеках они были длиной до восьми дюймов, а на носу и подбородке – до четырех дюймов. По цвету они были серебристо-серыми, а по фактуре – шелковистыми, тонкими и прямыми. Задняя и внутренняя поверхность уха, также как и внутренность наружной ушной раковины, были полностью покрыты волосами, точно такими же, как и на лице, около восьми дюймов длиной. Именно эта особенность главным образом способствовала тому, что на первый взгляд его внешний вид казался неестественным и почти нечеловеческим.

 

Схве Маонг был родом из горного племени лао. В пять лет местный вождь отправил его в качестве подарка во дворец Баджидо. Хрупкого сложения, со светло-карими глазами, он жил как придется, плел корзины и играл роль шута. Мальчиком он научился подражать обезьянам, которые обитали в тиковых лесах бирманской глубинки. Когда Схве Маонгу минуло 20, Баджидо женил его на придворной красавице, от которой у него родилось четверо детей, из которых девочка по имени Мафоон, "крепкая и очень миленькая", также была волосатая. Когда она родилась, волосатыми были только ушки, но к шестимесячному возрасту все ее тело покрылось мягким серым пухом. Крафорд увидел ее, когда ей исполнилось два или три года, – лица ее к этому моменту нельзя было разглядеть. Через тридцать лет после описания Крафорда Мафоон снова появляется в отчетах другой дипломатической миссии, посланной в Аву для улаживания отношений с по-прежнему беспокойными Конбаунами. К тому времени она стала зрелой женщиной очень похожей на отца, давно уже умершего. Шелковистые волосы струились по ее лицу, оставляя открытыми только глаза и губы. Шея, грудь и руки также были покрыты мягким пухом, а кроткими манерами она сильно напоминала отца. Она была замужем – наследник Баджидо, возможно, движимый интеллектуальным любопытством, предложил вознаграждение любому мужчине, который возьмет ее в жены. У нее было двое мальчиков, таких же волосатых, как и она сама. Один из них впоследствии женился, и на фотографии, сделанной, вероятно, около 1875 года, изображены три поколения семьи: Мафоон, ее сын и его дочь – все одинаково заросшие волосами.

 

 

Ланугинозный гипертрихоз. Мафоон, Бирма, ок. 1856 г.

Е.Х. Манн (Королевский антропологический институт Великобритании и Ирландии).

 

В 1885 году в результате 3-й Англо-бирманской войны британцы окончательно покорили Верхнюю Бирму. Дворец в Аве был разрушен. Мафоон вместе с семьей убежала в лес, где спустя несколько недель их обнаружил офицер итальянской армии, который и убедил всех отправиться в Европу. Именно там летом 1886 года они выступали в Египетском холле на Пикадилли и в "Фоли-Бержер" в Париже. И это последнее, что мы знаем о семье Схве Маонга.[246]

 

Топография волос

 

Мы рождаемся почти с пятью миллионами волосяных фолликулов, и больше их у нас никогда не будет. Фолликулы расположены рядами, причем так, что соседние фолликулы чередуются друг с другом в строго определенном порядке. Как создается эта очередность? Если бы волосяные луковицы были просто разбросаны на коже головы случайным образом, у каждого из нас в волосяном покрове имелось бы по меньшей мере несколько проплешин. Вопрос о том, как достигается столь регулярное расположение фолликулов, глубок и сложен. Это вопрос о том, как можно добиться порядка на пустом месте.

Трудность заключается в слове "регулярное". Довольно легко представить, каким образом организм создает уникальные части – например, пять пальцев на руке. Здесь речь идет всего лишь о наличии заранее запрограммированных клеток, которые реагируют на единый градиент в концентрации определенных молекул. И в самом деле, наши пальцы формируются именно таким образом. Но что, если вместо руки с пятью неповторимыми пальцами кому-то захотелось бы иметь руку, где чередовались бы пальцы только двух типов, к примеру безымянный и указательный? Получилась бы странная разновидность кисти, что-то вроде: безымянный-указательный-безымянный-указательный-безымянный. Таких рук никогда не существовало. Но, по сути, наша кожа решает именно эту проблему. Из безликого эмбрионального однообразия кожа должна как-то упорядочить себя, образовав решетку регулярно расположенных волосяных фолликулов, разделенных кусочками кожи. Несомненно, что здесь нужен некий тонкий механизм.

Точная форма этого механизма пока что неясна, но логика его действия очевидна. Требуется способ создания волосяных фолликулов, но такой, чтобы они возникали не везде. У плода первые фолликулы начинают появляться примерно в три месяца после зачатия. При этом все пять миллионов волосяных фолликулов возникают далеко не сразу: вначале они появляются на бровях, затем, подобно сыпи, распространяются сперва по остальной голове и лицу, дальше вниз – по шее, горлу и туловищу, потом по бедрам и плечам и, наконец, вниз по рукам и ногам.

Мне нравится это сравнение с сыпью, так как оно предполагает распространение какого-то инфекционного изменения в клетках кожи, которое начинается из небольшого очага и разносится во все стороны. Это изменение выводит кожные клетки из состояния покоя, и они приобретают способность продуцировать фолликулы. Вероятно, клетки включаются в этот процесс одна за другой. Возможно, что начинается он с какой-то одной клетки, расположенной в районе лба, которая затем индуцирует такие же изменения в соседних клетках, а те в свою очередь передают преобразования соседним и так далее, и так далее. Никто пока в точности не знает, какова природа этих изменений, но некоторые догадки на сей счет все же возможны.

Каждый волосяной фолликул – это химера, гибрид двух различных тканей. Впрочем, как и сама кожа. Кожа которую мы видим и трогаем, которая подвержена атмосферным воздействиям и успешно противостоит им, – это эпидермис, или несколько слоев клеток, происходящих из наружного зародышевого листка, эктодермы. Под эпидермисом находится другой, более толстый слой дермы, происходящий из мезодермы. Тесное сотрудничество эпидермиса и дермы приводит к созданию волосяного фолликула. Взаимоотношения этих двух слоев между собой можно сравнить с беседой, непрерывным молекулярным диалогом, когда каждый сигнал сопровождается ответом на него.

Это подтверждается простым, хотя и несколько эксцентричным экспериментом. В 1999 году супруги-ученые, испытывающие сильную привязанность не только друг к другу, но и к науке, поставили опыт на себе, выступив в роли морских свинок. Они иссекли кусочек дермы из кожи на голове супруга, а затем трансплантировали его на лишенный волос участок внутренней стороны руки супруги. Как ни удивительно, отторжения тканей мужа (в иммунологическом смысле) не произошло: по-видимому, волосяные фолликулы каким-то образом защищены от опеки иммунной системы. Так или иначе, вскоре после заживления раны на руке у супруги, в том месте, где была сделана пересадка, начали отрастать длинные волосы. Эксперимент показал, что у дермы есть голос, которым она говорит эпидермису: делай фолликул здесь. В самом деле, то изменение, которое, как сыпь, распространяется по всему телу плода и приводит к развитию волосяных фолликулов, возникает именно в клетках дермы, последовательно обретающих голос, – они становятся разговорчивыми почти повсюду и по неизвестной причине молчат лишь на кончиках пальцев, ладонях, подошвах, губах и гениталиях.

Если в этих разговорах слоев кожи дерма дает инструкции, открывая диалог, то эпидермис пользуется правом незамедлительного ответа. По мере того как клетки дермы, обретая активность, призывают эпидермис к созданию фолликулов, последний должен регулярно и твердо отвечать отказом на это предложение. Если бы он этого не делал, вся кожа плода превратилась бы в гигантский волосяной фолликул, а возможно, и в опухолевидную массу недоразвитых фолликулов и волос. Именно ответами эпидермиса определяется характер расположения волосяных луковиц. Каждый вновь образованный фолликул дает команду, запрещающую находящимся вокруг него клеткам эпидермиса также становиться волосяными фолликулами. При этом каждый вновь образованный фолликул не только запрещает соседним клеткам слушать настойчивые уговоры дермы, но и вообще полностью отключает их.

Словами в этом разговоре служат сигнальные молекулы, подобные тем, которые нам уже встречались прежде. Хорошими кандидатами на роль ингибиторов эпидермиса служат костные морфогенетические белки (BMP). Перья птиц отдаленно напоминают волосы млекопитающих, и если бусинку, смоченную в BMP, поместить на кожу куриного эмбриона, перья на этом участке не вырастут. В таком же эксперименте с применением фибробластного фактора роста образуются дополнительные, хотя и странным образом деформированные перья, – возможно, это изначальный стимул, индуцирующий рост волос. Те же молекулы, как полагают, работают и у нас, аналогично воздействуя на волосяные фолликулы. Но сигналы вокруг развивающегося фолликула столь разнообразны, многочисленны и динамичны, что трудно понять, что именно там происходит. Мы знаем, однако, что мыши, выведенные путем генетической инженерии с дефектами в стимулах роста фолликулов, часто бывают лысыми.[247]

 

Земля без колосьев

 

Есть один вопрос, на который многие из нас отчаянно хотят получить ответ, когда речь заходит о волосах: почему мы все-таки их теряем? При подсчетах, сколько именно мужчин страдает от андрогенной алопеции, или облысения по мужскому типу, важно знать, что именно подразумевается под этими терминами. Однако в целом можно привести следующие цифры: до 20 процентов мужчин-американцев лысеет в возрасте двадцати-тридцати лет, 50 процентов – в возрасте от 30 до 50 и 80 процентов – в возрасте от семидесяти до восьмидесяти лет. Облысение – это воистину удел белого человека: у африканцев, жителей Восточной Азии и американских индейцев вероятность облысения в течение жизни составляет менее 25 процентов. Это нарушение, с медицинской точки зрения совершенно безопасное, многих приводит в уныние. Когда Овидий писал в "Искусстве любви"[248]:

 

"Стыдно быку без рогов, и стыдно земле без колосьев,

Стыдно кусту без листвы, а голове без волос",

 

– он выражал общее мнение. По меньшей мере в течение столетия американцы указывают явную антипатию лысым мужчинам на выборах в высший орган власти страны. За исключением Джеральда Форда (1974-1977), который, будучи лысым, пришел к власти не в результате выборов, последним лысым президентом был Дуайт Д. Эйзенхауэр (1953-1961). Европейцы с большей симпатией относятся к плешивым политикам (Черчилль, Папандреу, Симитис, Жискар д'Эстен, Миттеран, Ширак, Кракси, Муссолини), но даже они не могут сравниться с жителями Советского Союза, где по необъяснимой причине регулярно чередовались, хотя их трудно считать избранными, лысые и волосатые вожди: Ленин (лысый), Сталин (волосатый), Хрущев (лысый), Брежнев (волосатый), Андропов (лысый), Черненко (волосатый), Горбачев (лысый). Эта традиция сохраняется и в Российской Федерации: Ельцин (волосатый), Путин (с зачесом над лысиной).[249]

В чем причины облысения? Сэмюэль Джонсон приводил следующее объяснение: "Причина облысения мужчины заключается в высыхании мозга и его сжатии внутри черепа". Эту точку зрения можно легко сбросить со счета, как и другую теорию, популярную в XX веке, которая связывала потерю волос с ношением шляп. Однако дерматологи не спешат предлагать более убедительные объяснения. Склонность к облысению – это, очевидно, семейное свойство, но утверждения о том, что оно возникает вследствие единичной рецессивной мутации или "наследуется по материнской линии" (рецессив, связанный с X-хромосомой), неверны. Облысение по мужскому типу вызывается несколькими генами, ни один из которых до сего времени еще не идентифицирован. Но какими бы они ни были, они должны оказывать влияние на жизненный цикл волосяного фолликула.

Волосяные мешочки имеют своеобразную привычку разрушаться, а потом восстанавливаться. Большую часть времени они просто производят волосы. Отдельный фолликул с кожи головы может работать над выращиванием одного волоса где-то от двух до восьми лет: чем дольше длится этот процесс, тем длиннее становится волос. У мышей фолликулы трудятся над производством каждого волоса не более двух недель, поэтому шерстка у мышей очень короткая. К концу ростового периода фолликул начинает уменьшаться в размерах и отмирает, после чего волос выпадает. Однако примерно на середине фолликула имеется выпячивание клеток эпидермиса – "стволовые клетки", которые обладают двумя замечательными особенностями: они бессмертны и могут становиться любым типом эпидермальных клеток, из которых образуется фолликул. Они-то и составляют ту самую материю, которая идет на регенерацию фолликула.[250]

Но только не у лысых мужчин. Вместо возрождения полностью продуктивного фолликула у них образуется бледная и слабая его копия – подобие фолликула, способное произвести только очень тонкие волосы. Почему так происходит, остается загадкой. Один факт тем не менее известен: чтобы облысеть, необходим тестостерон, и притом в больших количествах. В том же отрывке "Истории животных", в котором Аристотель рассказывает о высокорослости евнухов, он упоминает также о том, что они не лысеют.[251] Это наблюдение было подтверждено в 1913 году при изучении последнего евнуха Оттоманской империи. Первое тщательное свидетельство того, что именно тестостерон, а не какой-то иной из тестикулярных гормонов, к примеру эстроген, является причиной облысения, было получено в 1942 году в исследовании американского врача Джеймса Хамильтона. Некоторые из изученных им пятидесяти четырех евнухов родились без яичек; другие были кастрированы в раннем возрасте по медицинским показаниям (например, из-за паховой грыжи). Хэмильтон не сообщает, откуда он взял остальных своих испытуемых, хотя одна из более поздних его статей содержит намек на то, что это были умственно отсталые индивиды, кастрированные в психиатрических учреждениях штата Канзас в мальчиковом возрасте, в соответствии с программами по евгенике, которые процветали в Соединенных Штатах вплоть до 1960-х годов (а в некоторых странах и того позже). В полном согласии с утверждением Аристотеля ни у одного из мужчин, кастрированных до окончания периода полового созревания, не обнаружилось никаких признаков облысения. У них даже не увеличилась относительная высота лба, как это случается почти у всех взрослых мужчин. Это происходило не потому, что они были родом из семей с хорошими волосами – у многих среди родственников были явно лысеющие мужчины. Доказательство, что в основе юношеской шевелюры евнухов лежит отсутствие тестостерона, было получено тогда, когда Хамильтон стал давать испытуемым добавки мужского полового гормона, от чего у них начали выпадать волосы. Как только он прекращал лечение, волосы снова начинали быстро отрастать.[252]

Вероятно, на том основании, что для облысения мужчинам нужны тестикулы, возникло представление о необычайных мужских качествах преждевременно теряющих волосы индивидов. Это утверждение окружено ореолом восторженной шумихи. (Якобы даже Юлий Цезарь радовался прозвищу "лысый соблазнитель".) Конечно, существует печальная ирония в том, что гормон, отвечающий за рост бороды у мужчин в юности, позднее уничтожает волосы на их головах. Однако нет прямых доказательств, что рано лысеющие мужчины имеют больше тестостерона или что у них родится больше детей, чем у их сильнее обволошенных ровесников. С другой стороны, именно отсутствие тестостерона, вероятнее всего, предохраняет женщин от облысения. Женщины, у которых по тем или иным причинам обнаруживаются аномально высокие концентрации тестостерона, характеризуются не только ростом бороды, но и тенденцией к облысению, так как гены облысения у них, до того молчащие начинают проявлять свое действие.

Есть ли у лысых хоть какая-то надежда? В противовес широко распространенным заблуждениям, сбривание волос не стимулирует их роста. Волосы от этого не делаются гуще или темнее, поэтому не имеет смысла уничтожать то малое, что у вас осталось, если, конечно, не руководствоваться эстетическими причинами. Лучше воспользоваться ингибитором дигидрокситестостерона (ДГТ), более мощного варианта тестостерона. По крайней мере, именно на этом основан один из способов лечения, весьма популярный в настоящее время и, говорят, достаточно эффективный. Если же он вас не привлекает (у небольшого числа получавших этот курс лечения в качестве побочного эффекта развивалась импотенция), тогда вскоре можно будет воспользоваться другими технологиями. Спящий волосяной мешочек у молодой мышки можно заставить продуцировать волос, если ввести вирус, обеспечивающий высокие концентрации соник-хеджхога. Избыток соника, вероятно, вызывает пролиферацию стволовых клеток на бугорке фолликула. Если то же самое удастся сделать с деформированными фолликулами на коже головы у лысых, тогда наверняка в ближайшее время можно рассчитывать на появление радикального способа борьбы с облысением. Но что, если волосяные фолликулы на голове у лысых нельзя регенерировать? Значит, нужно создать новые. И это вполне решаемая задача. Мыши, выведенные путем генной инженерии для избыточной продукции особой формы белка, формируют новые волосяные мешочки в таком возрасте, когда нормальные животные на это уже не способны. К сожалению, и соник-хеджхог и β-катенин – это исключительно мощные молекулы. Излишек любой из них приводит к возникновению опухолей волосяных фолликулов, что вызвано опять-таки теми же дополнительными стволовыми клетками. Судя по всему, не так уж трудно стимулировать кожу на создание новых волос; куда труднее контролировать этот процесс.[253]

 

Под покровом голой обезьяны

 

Четыре столетия и два континента, разделяющие Петруса Гонсальвуса и Схве Маонга, не могут скрыть удивительного сходства между ними. Если бы Петрус скинул свои богатые темные одежды с алыми отворотами и повязал бы кусок ткани вокруг бедер, два мужчины выглядели бы как братья. Однако в XIX веке некоторые ученые, например Карл фон Зибольд и Александр Брандт, были поражены сходством волосатых людей с орангутанами. Под влиянием новой теории дарвинизма они предположили, что чрезмерная волосатость – это атавизм. По сути, это была новая версия древней формулировки со знаком равенства между волосатостью и звериными свойствами, хотя и облаченная в научную терминологию; но вышеупомянутые ученые были достаточно осторожны и отмечали, что волосатые субъекты, хоть и выглядят как обезьяны, являются на самом деле людьми.[254]

И до сих пор можно иногда наткнуться на утверждения о том, что мутации, приводящие к чрезмерному росту волос, выявляют шерсть под покровом голой обезьяны. Однако есть причины считать, что атавистическая гипотеза неверна – по крайней мере, в отношении этих двух семейств. У волосатых бирманцев, как и у обросших шерстью жителей Канарских островов, согласно описаниям, были исключительно мягкие, шелковистые волосы, которые на самом деле совсем не напоминали ни грубую шерсть, покрывающую тело взрослых человекообразных обезьян, ни волосы, растущие на голове или лобке у человека. Более того, крупные человекообразные обезьяны при всей своей волосатости уступают в этом отношении чрезмерно волосатым людям. У Петруса и Схве Маонга носы, щеки и уши также были покрыты волосами, а у человекообразных обезьян шерсть на этих местах практически отсутствует.

Тогда откуда же происходит этот избыток волос? Один из возможных источников кроется в развитии плода. Примерно через пять месяцев после зачатия тело каждого человеческого плода покрывается плотным волосяным покровом, лануго. Волосы эти мягкие и шелковистые, длиной менее сантиметра, впоследствии загадочным образом исчезают: спустя несколько недель после того, как выросли, они выпадают. И если бы дети иногда не рождались с остатками лануго (например, на ушах), мы вряд ли бы вообще узнали о наличии этого волосяного покрова. Кажется вероятным, что мутация, которая присутствует в семьях волосатых людей, способствует сохранению лануго. Вместо перехода к нормальному типу оволошения, свойственному подросткам, а затем взрослым, состояние волосяных фолликулов в этих семьях навсегда сохраняет фетальный статус.[255]

И это касается не только волосяных мешочков. В своем описании Схве Маонга Джон Крафорд отметил, что у волосатого бирманца было всего девять зубов: четыре резца и один клык в верхней челюсти, четыре резца в нижней и ни единого моляра ни там, ни тут. У Мафоон, дочери Схве Маонга, зубов было еще меньше. Тщательные обследования показали, что речь шла не о выпадении отсутствующих зубов, а об их непрорезывании. Все выглядело так, как будто бы развитие зубов и волос попросту остановилось где-то на шестом месяце внутриутробной жизни, тогда как весь остальной организм продолжал успешно расти.

Дарвин и сам знал о бирманском волосатом семействе. В книге "Происхождение человека и половой отбор" (1859) он пишет о том, что приданое, потребное для того, чтобы выдать Мафоон замуж, служит доказательством всеобщей непривлекательности чрезмерно волосатых женщин.[256] Никогда, однако, он не рассматривает волосатость в качестве атавистического признака. Зато его интересует связь между волосами и зубами. Некто м-р Уедербурн рассказал ему об индусской семье в Синде, нынешнем Пакистане, у членов которой – десяти мужчин в четырех поколениях – зубы практически отсутствовали. Однако эти мужчины не были волосатыми, напротив, они облысели практически с момента рождения. У этих лысых, беззубых индусов также отсутствовали потовые железы. Не способные к потоотделению, они увядали в жарком климате Хайдарабада.

Волосы, зубы, потовые и молочные железы (хотя Дарвин о последних не упоминает) – все эти на первый взгляд столь различающиеся по своему назначению и по плану строения органы на самом деле теснейшим образом связаны. В местах, где они расположены, кожа разрастается или образует пустоты для создания чего-нибудь новенького. Простая трубочка, представляющая собой волосяной фолликул, мощная наковальня из дентина и эмали, каковой является зуб, и выступающая тяжесть протоков, образующих молочную железу, – все это вариации на одну и ту же архитектурную тему. Генетические нарушения – а их более сотни, – поражающие одни из этих органов, часто наносят вред и другим.

Эти органы не просто связаны своим происхождением с кожей. Они и построены сходным образом. Пока волосяные фолликулы формируются по всему эмбриональному эпидермису, другие эпидермальные клетки скапливаются вместе или создают полости для образования зубов или молочных желез. Подобно фолликулам волос, каждый из этих органов представляет собой химеру, так как частично они образованы из эктодермы, частично – из мезодермы.

О родстве между всеми этими органами свидетельствуют формирующие их молекулярные сигналы. "Индусы" все еще живут неподалеку от Хайдарабада, где их по ошибке называют буддистами, тогда как в действительности они мусульмане. В 1934 году представители шести поколений "буддистов" образовывали восемь семейств. Сейчас число их намного увеличилось. Благодаря своей характерной внешности, они считают друг друга родственниками, но имя своего прародителя-мутанта давно позабыли. Как и сообщал в письме Дарвину его корреспондент, у них нет ни потовых желез, ни зубов (за исключением вдруг появившегося у кого-то моляра), но они все же обладают хоть и небольшой, но шевелюрой. Они – носители мутации гена, кодирующего белок эктодисплазин, который получил свое название вслед за нарушением, вызываемым его отсутствием: эктодермальная дисплазия.[257] Мутацией того же гена можно объяснить появление мексиканской голой собачки. Прозванная лысой собачкой, или ксолоитцкуинтль, собачка будто бы была выведена ацтеками еще в XIV столетии, возможно, для мяса, а скорее всего – как постельная грелка. Она тоже лысая, беззубая, с морщинистой сухой кожей из-за недостатка сальных желез.[258]

Еще более тесная родственная связь между органами обнаруживается благодаря одной странной разновидности аквариумных рыб. Примерно с основания сегуната Токугавы, то есть с начала XVII столетия, японские любители рыб вывели породу медака (Oryzias latipes), небольшую рыбку которая обычно живет на рисовых полях. Этих рыбок, своеобразную забаву бедняков, можно купить в японских городах в любом ночном магазинчике, причем во множестве разновидностей: альбиносов, пятнистых, с длинными плавниками – и мутантов без чешуи. Отсутствие покрова у рыбок медака, как и у индусов-буддистов, вызвано мутацией, выводящей из строя сигналы эктодисплазина.[259]

Использование одной и той же молекулы при формировании человеческих зубов, волосяных фолликулов и потовых желез – наследие эволюционной истории, общей для всех этих органов.[260] Очевидно, эту историю разделяют также – в той или иной степени – перья птиц и чешуя рыб и рептилий. Все эти органы эволюционировали из какого-то простого кожного образования, имевшегося у некоего отдаленного, давно исчезнувшего предка позвоночных. Никто в точности не знает, каким был этот орган. Вернее всего предположить, что он напоминал зубообразные чешуи, придающие коже акулы ее шершавость.

Наличие правильного сигнала может даже привести к неожиданному воскрешению органов, давно исчезнувших в процессе эволюции. У птиц нет зубов, но у их предшественников-динозавров они, несомненно, были. Если кусочек эктодермы с клюва куриного эмбриона пересадить на кусочек мезодермы, взятой из нижней челюсти зародыша мыши, а потом все это поместить в глазную орбиту молодой мышки, куриная ткань, лишенная зубов в течение 60 миллионов лет, внезапно начнет их продуцировать, и тогда появятся куриные зубки, напоминающие по форме маленькие моляры, построенные из дентина и эмали.[261] Это означает, что молекулярные сигналы, которыми пользовался Tyrannosaurus rex для создания своих могучих клыков, не отличаются от тех, с помощью которых формируются миниатюрные моляры у маленькой мышки. Эти-то сигналы, по-видимому, и были утрачены у птиц.

 

Возможно, в основе появления добавочных сосков или даже грудей у некоторых людей лежит та же самая причина – возрождение древней системы сигналов, частично похороненной в процессе эволюции. У людей и человекообразных обезьян имеется только два соска, но у большинства млекопитающих их больше. Иногда дополнительный сосок – всего лишь маленькое темное пятнышко, расположенное где-то на животе; но бывает и так, что на теле появляются полностью сформированные лишние грудные железы. Добавочные соски встречаются довольно часто: от 2 до 10 процентов населения обладает по меньшей мере одним таким образованием. У европейцев дополнительные соски или груди обычно располагаются ниже соответствующих нормальных органов, часто прямо на линии, идущей от обычного органа к животу. Любопытно, что у японских женщин дополнительные органы располагаются выше нормальных, нередко под мышками.[262]

 

 

Дополнительные молочные железы на бедре (Библиотека Уэллком, Лондон).

 

Подобное появление добавочных сосков заставляет вспомнить древние "молочные линии" – десять пар расположенных в два ряда сосков, которые тянулись от подмышек до бедер у некоторых предковых млекопитающих. Молочные железы в подмышках найдены у лемуров (Gaelopithecus volans), а рекордное число сосков, обнаруженных у одного человека, равняется девяти – пять с одной стороны туловища, четыре с другой. Где бы они ни находились, дополнительные молочные железы работают в точности как нормальные: они разбухают и даже выделяют молоко во время беременности. Имеются сведения о том, что женщины вскармливали детей из дополнительных, расположенных на бедрах, молочных желез. Дополнительные соски и груди регулярно появляются в некоторых семьях, хотя вызывающая их мутация (или мутации) пока что не идентифицирована. Тем не менее группа лондонских ученых пытается определить мутацию в линии мышей, имеющих восемь сосков вместо обычных шести. Они уже назвали новый ген "скараманга" ("scaramanga"), по имени злодея в фильме о Джеймсе Бонде "Человек с золотым ружьем", у которого как символ его преступной натуры имелся дополнительный сосок в верхней части грудной клетки с левой стороны.[263]

 

Артемида Эфесская

 

Разговор о груди возвращает нас к Линнею. В 1761 году, став знаменитым после публикации "Системы природы", Линней выпустил в свет одну из своих менее известных работ: обзор животных Швеции под названием "Фауна Швеции". Заглавие было революционным: термин "фауна" – от римского имени бога Пана – был впервые использован для подобного труда. Это был прямой аналог изобретенного ранее и к тому времени широко распространенного термина "флора". Для фронтисписа своей книги Линней выбрал любопытный символ, изображение греческой богини Артемиды, или Дианы, Эфесской. Мы не знаем, почему он предпочел именно этот образ, но можем высказать на этот счет некоторые предположения.

Артемида Эфесская была в силу необъяснимой двойственности греческих божеств одновременно богиней природы и городов. В изначальном воплощении как объект культа, процветавшего в Малой Азии около VI века до н.э. она считалась защитницей от злых сил, и ее образ помещали на городских стенах в окружении отличительных признаков страны, изображений виноградных гроздьев и льнувших к ней животных наподобие львов, змей, птиц и гарпий. Извлеченная из эфесских руин, в XVIII веке она стала символом дикой природы и разума. Якобинцы даже посвятили ей Храм разума, который некогда возвышался в Страсбурге, но до нашего времени не сохранился. Возможно, поэтому Линней поместил ее в самом начале своей "Фауны" в знак победы Разума над Природой, хотя и шведской: разлученная со своей средиземноморской родиной, Артемида стоит среди прогуливающихся оленей.[264]

 

 

Артемида Эфесская в Швеции.

Фронтиспис книги К. Линнея "Фауна Швеции" (Библиотека Уэллком, Лондон).

 

А может быть, Линней руководствовался иными, более простыми соображениями. В его Артемиде самым поразительным являются не окружающие ее животные, а четыре выступающие груди. В этом она прямо повторяет свои статуи времен античности, где она всегда представала с многочисленными возвышениями на груди и животе. В эпоху Ренессанса эти вздутия однозначно интерпретировались как случаи крайней полимастии, но более скептически настроенные современные ученые считают, что это могли быть просто гроздья фиников, тестикулы быков или даже части доспехов, в которые была облачена богиня. Как бы то ни было, у Линнея Артемида явно обладает четырьмя прекрасно сформированными молочными железами, что, вполне вероятно, можно принять за прямую аллюзию на самое замечательное открытие ученого: таксон млекопитающих. Ибо Линней сделал наличие молочных желез одной из отличительных характеристик того, чем мы являемся: членами огромного класса созданий, в который входят одновременно бурозубка-пигмей и голубой кит.

Существует и третье возможное объяснение линнеевской Артемиды, возвращающее нас к тому, с чего мы начали, а именно, нашего отличия от остальных диких созданий. При описании вида Линней всегда действовал так же, как это делают таксономисты и в наши дни: перечислял признаки, отличающие представителей данного вида от других. Так он поступал в отношении всех видов, за исключением одного: нашего собственного. Когда дело дойдет до Homo sapiens, Линней вместо перечисления числа и категорий зубов, описания густоты волос или распределения сосков напишет только одно: "Познай самого себя" ("Nosce te ipsum"). В примечании он говорит, что эти слова Солона были начертаны золотыми буквами над входом в храм Дианы.[265] Возможно, выбрав Артемиду Эфесскую в качестве символического изображения для своей книги, он вспоминал и ассоциировал ее с этой характеристикой человеческого вида, самой краткой из всех возможных: познай самого себя.

На этом, по существу, заканчивается линнеевское описание вида Homo sapiens. Он приводит еще несколько до странности назидательных высказываний, объясняющих смысл той новой идентичности, которую сам же только что нам и приписал. "Познай самого себя, – учит он, как Божье создание, наделенное разумом, дабы поклоняться Творцу; как самый совершенный и искусный механизм, повелитель животных и венец творенья". Все эти эпитеты звучат сегодня, как утверждения, давно потерявшие смысл. И все же в заключительном пассаже Линней сообщает нам нечто такое, что вполне можно использовать в качестве эпиграфа ко всему, написанному мною выше:

 

Познай самого себя, как ты патологически слаб: хрупкий пузырек, подверженный тысячам случайностей.

Если ты поймешь это, ты – человек и род, действительно отличный от других.

 

Глава IX

Умеренная жизнь

[о старении]

 

Луиджи Корнаро (1464-1566). Тинторетто. (Галерея Палатина)

 

Хорея Гентингтона – один из самых тяжелых нейродегенеративных синдромов. Вначале болезнь обычно проявляется в виде незначительного психического расстройства и не кажется особенно серьезной. Но по мере прогрессирования заболевания психопатические приступы нарастают, увеличивается их число и степень тяжести. Ухудшается также координация движений, появляется характерная скованность в походке и жестах, которая в конечном итоге завершается параличом. В заключительной фазе болезни, для наступления которой требуется от десяти до двадцати лет, больные сходят с ума и страдают от нервных припадков. Один из них и приводит к летальному исходу. Это нарушение вызывается доминантными мутациями, выводящими из строя белок, участвующий в синаптических связях нейронов мозга. По причинам, пока еще не вполне понятным, мутантная форма белка запускает молекулярную программу, постепенно убивающую сами нейроны.[266]

Болезнь Гентингтона имеет несколько странных особенности. Одна из них состоит в том, что симптомы заболевания приобретают из поколения в поколение все более тяжелую форму. Это явление носит название "антиципация" и определяется своеобразием соответствующего гена и вызывающих болезнь мутаций. Ген содержит участок, в котором три нуклеотида, ЦАГ, повторяются снова и снова. У большинства людей содержится от восьми до тридцати шести таких повторений. Приводящие к болезни Гентингтона мутации увеличивают число повторов, разрушая тем самым структуру белка. Некоторые подобные мутации наносят еще больший ущерб белку в ряду поколений что способствует увеличению тяжести заболевания.

Другая особенность болезни связана с ее частотой. Она поражает одного из тысячи европейцев. Это очень высокий процент: большинство доминантных мутаций, приводящих к смертельному исходу, характеризуются частотой один на миллион. Но хорея Гентингтона может сохраняться в одной семье в течение многих поколений. В 1872 году Джордж Гентингтон, нью-йоркский врач, описал это нарушение, выраженное у представителей нескольких семейств с Лонг-Айленда, штат Нью-Йорк. Среди предков всех этих людей был некто Джефри Феррис, эмигрировавший из английского города Лейстер в 1634 году. Он почти наверняка страдал этой болезнью, как и многие из его потомков, живущих в наши дни. В Южной Африке около двухсот пациентов с болезнью Гентингтона ведут свое происхождение от Элсье Клутенс, дочери голландца, приехавшего с Яном ван Рибеком и основавшего Капскую колонию в 1652 году. Большая группа больных хореей Гентингтона живет в Венесуэле возле озера Маракаибо. Все они потомки одного немецкого матроса, который сошел здесь на берег в 1866 году.[267]

Каким образом такое опасное, приводящее к летальному исходу заболевание может передаваться из поколения в поколение? В 1941 году британский генетик, блистательный и эксцентричный Дж.Б.С. Холдейн предложил ответ на этот вопрос. Он подчеркнул, что, в отличие от большинства генетических расстройств, симптомы болезни Гентингтона обычно проявляются только в зрелом возрасте. К этому времени большинство людей с дефектным геном уже имеют детей, каждый из которых может его унаследовать с 50-процентной вероятностью. В отличие от большинства летальных доминантных мутаций, убивающих своих жертв в раннем детстве и поэтому никогда не передающихся следующему поколению, мутация Гентингтона практически не влияет на репродуктивный успех ее носителей. Зрелый возраст для естественного отбора по существу невидим.[268]

Найдется не много других нарушений, вызываемых единичной мутацией, которые оказывали бы такой разрушительный эффект в столь позднем периоде жизни. И все же необычность болезни Гентингтона обманчива, ибо разъяснение Холдейном причин ее распространенности помогает также понять, с небольшими допущениями, почему мы, как и большинство других животных, стареем. В данной главе я попробую доказать, что старение – это генетическое нарушение, или, скорее, комплекс генетических нарушений, одни из которых поражают всех нас без исключения, а другие – лишь некоторых особей. Эта точка зрения противоречит самой сути большинства определений болезни. Согласно медицинской традиции, существуют различия между "нормальным" старением, с которым ничего нельзя поделать, и "старческими" заболеваниями, такими как атеросклероз, рак и остеопороз, поглощающими огромные суммы из бюджета общественного здравоохранения. Однако различия эти иллюзорны. Они не более чем медицинская фикция, которая позволяет врачам не обращать внимания на болезнь, поражающую всех нас, ибо они не в состоянии ее вылечить или хотя бы облегчить. При правильном подходе старение является именно тем, чем оно и кажется: грозным, поражающим всех недугом.

 

Бессилие отбора

 

Старение есть присущее организму угасание. Самое очевидное его проявление – это возрастание частоты смертности параллельно тому, как мы стареем. Для восьмилетней девочки, живущей в одной из развитых стран, риск того, что она не увидит своего следующего дня рождения, составляет 1 к 5000. Для восьмидесятилетней женщины это соотношение 1 к 20. Конечно, можно лишиться жизни и от причин, вовсе не связанных со старением, например стать жертвой насилия, заразной болезни, несчастного случая, однако суммарный вклад этих факторов довольно незначителен. Не будь всеобъемлющего воздействия старения, 95 процентов из нас справляли бы свой сотый день рождения; половина людей на века обогнала бы по возрасту библейских патриархов и жила бы дольше тысячи лет. Многие смогли бы увидеть начало IV тысячелетия.[269]

Эволюционное объяснение того, почему мы, а также большая часть других живых существ, стареем, базируется на двух доводах, скрытых в холдейновском объяснении частоты распространения заболевания. Первый состоит в том, что вредные последствия некоторых мутаций ощущаются лишь в поздние периоды жизни. Совершенно очевидно, что мутация может вызвать медленно прогрессирующее заболевание. Гентингтоновская мутация как раз и является такой бомбой с включенным часовым механизмом. Так же, как и мутация SOST, вызывающая склеростоз у белых жителей Южной Африки: дети от нее практически не страдают, но к зрелому возрасту чрезмерный рост костной ткани становится настоящим убийцей. Сходным образом действуют мутации гена BRCA1, семейного гена рака молочной железы, пагубные последствия которого обычно проявляются у женщин только в тридцати-сорокалетнем возрасте. Так же ведет себя и вариант гена АРОЕ, называемый ε-4, предрасполагающий пожилых людей к развитию инфарктов и болезни Альцгеймера.

Список подобных примеров можно продолжить, но вместе с тем следует признать, что нам мало что известно о бомбах суперзамедленного действия,таких, которые детонируют после окончания периода зрелости и вызывают старение. Сейчас давайте просто предположим, что они существуют. Однако даже такого допущения недостаточно для объяснения старения. Необходимо также понять, каким образом эти мутации, выступающие в роли бомб с часовым механизмом, смогли стать неотъемлемой частью человеческой жизни. Холдейн предложил объяснение этому факту, сославшись на то, что мутация Гентингтона невидима для естественного отбора. Ту же самую логику он применил шире. Представим себе доминантную мутацию, которая делает двадцатилетнего мужчину импотентом на всю оставшуюся жизнь. В Британии, по крайней мере в XXI веке, довольно мало мужчин становятся отцами до двадцати лет, а после этого возраста жертва такой мутации уже никогда не сможет иметь детей. Каковы бы ни были его достижения в ходе дальнейшей жизни, с точки зрения сохранения генетической преемственности он вообще мог бы и не родиться. Такая мутация может встречаться много раз у многих мужчин, но, если не принимать во внимание отцов-подростков, передаваться следующим поколениям она не будет и поэтому навсегда останется редкой. Вообразите теперь другую доминантную мутацию, которая тоже делает своего носителя импотентом, но лишь по достижении им девяностолетнего возраста. Такой мужчина имеет превосходные шансы вообще не заметить потери своих мужских качеств по той простой причине, что, скорее всего, умрет раньше, став жертвой рака, инфаркта миокарда, гриппа или дорожного происшествия, если, скажем, не увидит приближающегося автобуса. Лежа в земле, о "виагре" не думают. Однако пока он был жив и считался здоровым мужчиной, у него появились дети, часть из которых унаследовала мутантный ген и передала его своим потомкам, а те – своим и так далее. Фактически вполне вероятно, что мутация, просто по воле случая, распространится по всей популяции, и через много поколений окажется, что все мужчины, дожившие до девяноста лет, импотенты, – по существу, так сегодня и происходит.

Приведенные выше рассуждения попросту повторяют сказанное Холдейном о том, что сила естественного отбора по уничтожению вредной мутации ослабевает с течением жизни. Еще один британский ученый, сэр Питер Медавар, впервые применил этот принцип для объяснения причин того разнообразия способов, с помощью которых наши тела разрушаются в процессе старения. На поздних этапах онтогенеза одни мутации ухудшают функции сердечно-сосудистой системы, другие – способность противостоять раку и различным патогенным факторам, третьи ослабляют половые свойства, четвертые разрушают разум. Такие мутации замедленного действия всегда поражали человечество. Не подверженные действию естественного отбора, они широко распространились в популяции и сделались универсальными.

Гипотеза Медавара относительно окончательных причин старения, конечно же, имеет много сильных сторон, но есть в ней одно слабое место: она не объясняет действия случая. Легко понять, почему мутации, вызывающие ряд тяжелых нарушений в старческом возрасте, не устраняются отбором, но достаточно ли этой причины для объяснения их повсеместного распространения в популяции? Возможно. Существуют, наверное, тысячи различных мутаций, оказывающих вредоносное воздействие на организм в конце жизни, причем каждая из них, должно быть, возникала бессчетное число раз в человеческой истории. Безусловно, можно предположить, что некоторые из них распространились случайно, в особенности в те времена, когда размеры человеческих популяций были небольшими.

Но апеллировать к случайности – неблагодарная задача; мы предпочитаем детерминистскую теорию. В 1957 году одну из них выдвинул американский биолог-эволюционист Джордж Уильямс. По его утверждению, мутации, вызывающие старение, распространяются не по воле случая, а потому, что несут некоторые преимущества, хотя бы лишь молодым особям. Вообразите еще раз мутацию, которая приводит к импотенции в девяностолетнем возрасте, но зато обеспечивает необычайную плодовитость двадцатилетним. Носитель такой мутации наверняка обгонит других мужчин по числу детей, что обеспечит широкое распространение мутантного гена. В калькуляциях естественного отбора небольшие преимущества, проявляющиеся на ранних стадиях развития особи, часто перевешивают жестокие издержки, которыми приходится расплачиваться позже. Пожилой возраст с этой точки зрения есть та цена, которую мы платим за чрезмерную красоту и буйные излишества юности.

Некоторые генетики воспользовались логикой подобных рассуждений для объяснения широкого распространения хореи Гентингтона. Они утверждают, что женщины с таким заболеванием на ранних стадиях его развития отличаются чрезвычайной неразборчивостью в связях, или уступчивостью, или, по крайней мере, необычайной плодовитостью. В одном исследовании было показано, что женщины с болезнью Гентингтона имеют больше детей, рожденных вне брака, чем их здоровые сестры. Возможно, продолжают ученые в развитие своей аргументации, болезнь вызывается необычно высоким содержанием гонадотропина, гормона, определяющего половое поведение. Однако в поддержку этой точки зрения почти нет доказательств.[270]

Вообще говоря, о генах, вызывающих старение у человека, известно так мало, что трудно понять, которая из точек зрения – Медавара или Уильямса – является более правильной. В каком-то смысле различия между двумя теориями на самом деле не важны; обе они могут оказаться верными, поскольку выявляют сходные причины и последствия явлений. Обе теории утверждают, что старение происходит не просто так , а является побочным продуктом эволюции. В конечном итоге оно развивается вследствие неспособности естественного отбора противостоять мутациям, вызывающим заболевания у стариков. Ни одна из теорий подробно не разъясняет молекулярные причины старения или их механизмы. Они не говорят о каком-либо одном молекулярном механизме, который можно было бы отрегулировать, обеспечив тем самым наше с вами бессмертие. Скорее обе теории приходят к выводу о невозможности обнаружения подобного механизма, подразумевая под этим, что процесс старения является совокупным последствием множества различных мутаций, постепенно изнашивающих и в конечном итоге разрушающих наш организм.[271]

Возможно, поэтому, несмотря на массу предпринятых усилий, механистические причины старения до сих пор остаются нераспознанными. Время от времени корнем зла становится любой из десятков факторов биологии человека. По утверждению одних, старение обусловлено ферментацией бактерий в нашем кишечнике; по мнению других – снижением скорости клеточного деления; третьи во всем винят тяготы вынашивания и выращивания потомства. Есть и такие, кто считает старение последствием истощения некоей жизненной энергии, или накопления химических веществ, которые производятся клетками и в конце концов отравляют нас. Некоторые из этих идей наверняка абсурдны, однако в других определенно содержится какое-то зерно истины. Ниже следует обзор наиболее убедительных теорий: краткая история распада.

 

Геронтократы

 

На закате своих дней, купаясь в богатстве и славе после изобретения телефона, Александр Грэм Белл обратил свое внимание на генетику. Его первые попытки на новом поприще были довольно скромными. Он вывел породу овец с четырьмя сосками вместо обычных двух. Затем, сочетая свой интерес к звуку с увлечением генетикой, занялся изучением наследования глухоты. Однако его страстью была генетика долгожительства. Он начал с семейства одного из американских отцов-пилигримов, некоего Уильяма Хайда (который обосновался в Нориче, штат Коннектикут, в 1660 году). Все его потомки, общим числом 8797 человек, были отслежены составителями родословных. Анализируя эти записи, Белл пришел к заключению, что тенденция к долгожительству в основном наследуется. Ни его данные, ни статистика не подтверждали этот вывод. Но в целом он оказался прав: по современным оценкам, наследственность определяет долгожительство у европейцев на 20-50 процентов. В тот момент этих изысканий было достаточно, чтобы Белл приступил к реализации куда более грандиозных прожектов.[272]

Подобно многим другим ученым умам начала XX столетия, Белл с энтузиазмом относился к евгенике, конечно, не к "негативной" ее ветви, которая опиралась на государственные программы стерилизации умственно отсталых и антиобщественных элементов и вошла в моду в 1920-е годы. Для Белла подобный подход был недопустим: он был гуманным человеком, и не случайно первое американское общество глухих носит его имя. Его отношение к евгенике было "позитивным", либеральным и в значительной мере предпринимательским: по его мнению, евгеника могла оказаться полезной на рынке человеческих эмоций. Белл сперва выступил с предложением, а затем сам начал собирать обширные материалы о продолжительности жизни населения, используя для этого школы столичного города Вашингтона, федеральный округ Колумбия. Его метод заключался в том, чтобы опрашивать учащихся о возрасте их родителей, а также бабушек и дедушек. Затем он опубликовал материалы опроса вместе с именами и адресами интервьюируемых в солидном томе, который назвал безо всяких экивоков "племенной книгой человека". Он считал, что люди наверняка станут обращаться к его книге и что потомки семей долгожителей, получив нужные сведения, будут отыскивать друг друга, влюбляться и размножаться. А что же станут делать потомки людей, жизнь которых рано оборвалась? Может, они просто не будут вступать в брак? Или, возможно, долгожители и те, кто рано умирает, разделятся на две отчетливые расы, что приведет к формированию истинной геронтократии. Генетический прогресс, как и прогресс экономический, нуждается в эффективных рынках, а для создания эффективных рынков нужна информация – все это было для Белла слишком очевидно.

План Александра Грэма Белла был визионерским и слегка безумным. (Кто из нас станет выбирать предмет мечтаний на основе средней продолжительности жизни его или ее дедушек и бабушек?) Неудивительно, что он рухнул вместе со смертью Белла в 1922 году. И все же, если бы план получил широкое распространение и нашлись бы люди, готовые поступать так, как на то рассчитывал Белл, результаты оказались бы впечатляющими. Без сомнения, тщательная селекция семей долгожителей привела бы к появлению линий долго живущих людей. Возможно, они все же не достигли бы возраста библейских патриархов, но уж точно жили бы дольше тех семидесяти с лишним лет, на которые все мы имеем некоторые основания рассчитывать. Мы можем так рассуждать, потому что экспериментальные программы, сходные с той, что предлагал Белл, дают хорошие результаты на животных.

В 1980-х годах эволюционный подход к старению, предложенный Уильямсом и Медаваром, вдохновил исследователей на попытку создания линии долго живущих плодовых мушек. Если окончательная причина старения лежит в исключении влияния естественного отбора на поздних этапах жизни, рассуждали ученые, то, вероятно, мушек-долгожителей можно вывести, заставив естественный отбор воздействовать на старых мух. Плодовая мушка начинает размножаться в двухнедельном возрасте, едва вылупившись из куколки, но по прошествии десяти недель она окончательно стареет, достигая, по нашим масштабам, восьмидесятилетнего возраста. Самцы плодовых мушек вообще никогда не доживают до такого возраста, а отдельные самки – твердые орешки, которые все же достигают этого рубежа, – характеризуются полным истощением метаболических резервов, оборванными крыльями и слабенькими ножками.

Однако они все-таки способны отложить хотя бы несколько яиц. Так, поколение за поколением, только из яиц старых самок были выведены новые популяции плодовых мушек. В результате эксперимента были созданы благоприятные условия для тех генетических полиморфных систем, которые способствовали выживанию и сохранению плодовитости в старческом возрасте. По мере увеличения частот этих полиморфизмов продолжительность жизни мух возрастала. Скорость происходящих процессов была совершенно поразительной. Десяти поколений селекционно выведенных мух оказалось достаточно, чтобы средняя продолжительность жизни возросла на 30 процентов, что по человеческим меркам эквивалентно увеличению ожидаемой средней продолжительности жизни с семидесяти восьми лет до ста с лишним. Через пятьдесят поколений под действием отбора продолжительность жизни мух удвоилась.

При более внимательном обследовании этих мушек-долгожителей выяснилась их поразительная жизнестойкость. Они выживали в отсутствие воды и пищи, под воздействием вредных химикатов, тогда как их родственники из недолго живущих линий в тех же условиях быстро погибали. Однако за торжество в старости они платили дорогую цену. По мере роста продолжительности жизни плодовитость мушек на ранних стадиях онтогенеза снижалась. Самки откладывали меньше яиц, самцы не проявляли большой склонности к спариванию. Избегая излишеств, плодовые мушки из долгожительских линий скапливали свои ресурсы и запасались резервами жиров и сахаров. Они становились вялыми и неторопливыми; скорость движений, дыхания и обменных процессов у них была медленнее, чем у обычных мух.[273]

Этот результат совпадал с предсказаниями теории Джорджа Уильямса. Если старение есть генетическая расплата за ранний репродуктивный успех, тогда справедливо и обратное, а именно то, что жизнь можно продлить, заплатив за нее отказом от юношеских утех. Так выражается простое экономическое соотношение между плодовитостью и продолжительностью жизни. У мухи есть некоторое количество ресурсов: она может потратить их на то, чтобы жить долго, или израсходовать на потомство. Сделать и то и другое она не в состоянии. Эта цепь рассуждений приводит нас к Аристотелю. При описании физиологии животных он высказал предположение, что животным для жизни требуется "влажность" и что она имеется у них в ограниченном количестве: жизнь – это теплота и влажность, а смерть – холод и сухость. "Вот почему, – пишет он, – животные, которые часто совокупляются и производят много семени, рано стареют; семени остается все меньше, дальше оно исчезает, и наступает сухость".[274]

Со времен Аристотеля многочисленные исследователи подтвердили, что процесс воспроизводства у самых разнообразных существ является ценой выживания. Насколько тяжелой может быть эта плата в своем предельном выражении, демонстрируют австралийские сумчатые мыши Antechinus stuarti. Для самцов этого вида мышей существование по сути приравнено к сексу. Их короткая взрослая жизнь состоит из драк с другими самцами, блужданий в поисках самок и, после обнаружения последних, участия в изнурительных спариваниях, которые длятся по двенадцать часов и повторяются ежедневно в течение практически двух недель. Наверное, совсем неудивительно, что после одного-единственного брачного сезона самцы умирают, при этом все их ткани несут на себе признаки катастрофического старения. К моменту завершения своих обязанностей у них отсутствует сперма, предстательные железы ссыхаются, яички зарастают соединительной тканью, надпочечники гипертрофируются, печень некротизируется, желудочно-кишечный тракт кровоточит, половой член становится дряблым.[275]

Сумчатых мышей можно считать крайне выразительной иллюстрацией утверждения, что старение есть следствие юношеских эксцессов. Но есть доказательства, что тот же самый экономический принцип приложим и к людям, хотя и в гораздо меньшей степени. У британцев, конечно, нет отцов-пилигримов для построения генеалогий. Зато у них есть аристократия, ведущая начало в основном со времен норманнов, единственное, и по существу определяющее, достоинство которой состоит в одержимости своей родословной. По традиции, генеалогии британских знатных домов записываются в многотомную "Книгу пэров" Берка, но в наши дни можно получить более удобный свод родословных большинства британских пэров, начиная с герцогов и графов Аберкорн и кончая баронами Уиллоби де Брук, записанный на CD-ROM. Эта база данных, идущая в глубь веков до 740 года н.э., содержит информацию, если таковая имеется, о датах рождений, заключения браков и всех наследниках британских благородных семейств. С ее помощью можно проверить идею, очевидную для родителей любого только что появившегося на свет младенца, что рождение детей сокращает годы вашей жизни.

До промышленной революции жена британского аристократа могла рассчитывать прожить до сорока пяти лет. Она могла также рассчитывать родить двоих или троих детей. Эти усредненные цифры, однако, скрывают массу разнообразных случайностей. Некоторые женщины умирали молодыми и рожали очень мало детей. Другие умирали через десять или двадцать лет после наступления менопаузы (между пятьюдесятью и шестьюдесятью годами); они в среднем имели 2,4 ребенка. Но были и такие, хоть и очень редко, кто жил до девяноста лет и дольше. У этих пожилых леди средняя плодовитость составляла 1,8 ребенка, причем почти половина из них вообще были бездетными.[276]

Это поразительный результат. Он не только совпадает с итогами экспериментов на плодовых мушках, но и наводит на мысль о том, что если бы мечты Александра Грэма Белла как-то осуществились, у его геронтократов была бы совсем низкая плодовитость. Более здравое рассуждение состоит в том, что многие, хотя, конечно, далеко не все, признаки старческой деградации в поздние годы жизни трудно выправить, не отказавшись от физиологических и сексуальных излишеств юности. В будущем люди смогут себя проектировать и с помощью то ли улучшенных медицинских препаратов, то ли улучшенных генов жить столько, сколько им заблагорассудится. Однако ценой этой долгой жизни станут поколения двадцатилетних, которые, лишившись своей энергии, привычек и шарма, будут неотличимы от пожилых.[277]

 

La vita sobria[278]

 

Существует ли рецепт долгой жизни? Луиджи Корнаро полагал, что да. В 1550 году венецианский аристократ опубликовал трактат под названием "Рассуждения об умеренной жизни", в котором он описал привычки, обеспечившие ему долгую жизнь. В то время ему было, вероятно, восемьдесят три года, а прожил он либо до девяноста восьми, либо до ста трех лет – есть некоторые разногласия по поводу даты его рождения, но все сходятся во мнении, что дожил он до глубокой старости. По его собственным словам, до сорока лет он вел беспутный образ жизни, следствием которого были боли в желудке и в боку, подагра, лихорадка и неутолимая жажда. Врачи предупреждали его, что надо либо перемениться, либо готовиться к смерти. Он всерьез отнесся к их советам и целиком посвятил себя размеренному и упорядоченному образу жизни.

Основной принцип его новой системы был прост: мало есть и только такую пищу, которую он считал подходящей. "Не пресыщать себя пищей – и есть правило здоровья", – писал он. Корнаро почти не входит в детали, но в одном месте он излагает подробности своей диеты, и она не кажется слишком аскетичной. Обычная еда начинается с хлеба, за которым следует некрепкий бульон, можно с яйцом. Но, добавляет он "я также ем телятину, мясо козленка, баранину; я ем всякую дичь, а также куропаток и птиц вроде дроздов. Я также употребляю в пищу морскую рыбу, такую как карась или дорада и подобные им; среди различных пресноводных пород – щуку и других". Ничего не скажешь – скромная диета по масштабам итальянских застолий XVI века. Тем не менее в какой-то момент он сделался настолько худым, что друзья заставляли его есть больше. Корнаро отвечал им с мудростью оракула: кто желает есть долго, должен есть мало.

Несмотря на некоторое самолюбование, книга Корнаро очаровывает, ибо он получает столь явное удовольствие от своей долгой жизни. На портрете Тинторетто он изображен во всем великолепии старческой немощи – суровый патриций с тонкими чертами лица и просвечивающей от возраста кожей. Последние годы жизни Корнаро провел в собственном падуанском палаццо с росписями Рафаэля и на вилле в Эвганских горах возле реки Бренты в окружении изысканных садов и фонтанов. "Я не знал, – пишет он, – что мир может быть столь прекрасным, покуда не состарился".

"Умеренная жизнь" имела огромный успех. По мере того как он старел, Корнаро добавлял все новые материалы к последующим изданиям книги: два, три и, наконец, четыре новых рассуждения. Продукт итальянского Ренессанса, книга по стилю была классической (Якоб Буркхардт писал о ее совершенстве), по рассуждениям о физиологии – аристотелевской (в ней много говорится о потере влажности), по настроению сходна с мыслями Цицерона (старость – это желанный возраст, время мудрости, когда все страсти улеглись и перегорели). Она оказала длительное воздействие на последующую литературу. Отголоски этой книги можно найти, например, в текстах немецкого врача Кристофа Гуфеланда, чей труд "Макробиотика" (1796) обосновал теорию, к которой восходят все современные рекомендации по поводу здорового питания.[279]

Хуже всего то, что Корнаро оказался отчасти прав, утверждая, будто долго жить значит меньше есть. Под этим я подразумеваю не просто такую диету, которая предотвратила бы развитие ожирения или даже старения, а серьезное ограничение питания, которое могут добровольно выдерживать лишь очень немногие люди. Единственный надежный способ продлить общее физиологическое существование млекопитающего – это давать ему не более двух третей ежедневного количества требуемых калорий. В десятках исследований показано, что "калорийно ограниченная" диета на 10-50 процентов продлевает жизнь мышей по сравнению с теми животными, которые могут есть столько, сколько хотят. В каждой возрастной группе экспериментальные особи отличаются большей подвижностью, гладкой блестящей шерсткой и лучшим состоянием здоровья от контрольных животных. Кроме того, они намного худее и весят примерно в два раза меньше контрольной группы. Конечно, мыши, сидящие на калорийно ограниченной диете, в конце концов тоже умирают, но возраст, в котором у них происходит развитие диабета, инфекционных заболеваний, почечной недостаточности, аутоиммунных процессов, мышечно-скелетных нарушений, кардиомиопатии, нервных расстройств и, что всего удивительнее, рака, при этом значительно отодвигается. Сейчас подобные исследования проводятся на макаках резусах, чтобы выяснить, приведет ли ограничение калорий к удлинению жизни у приматов. Однако пройдет не менее десяти лет, прежде чем будет известен ответ.

Эта неопределенность не останавливает многих неокорнарианцев, и они решительно посвящают свою жизнь строжайшему соблюдению диеты. Ограничение калорий в питании стало одним из модных течений по сохранению здоровья и, подобно многим другим, имеет свои издания и своих гуру. Диета должна насчитывать примерно тысячу калорий в день, к которым обычно добавляется набор витаминов и микроэлементов. Тысяча калорий – это минимум, необходимый для поддержания жизни мужчине среднего роста, хотя едва ли достаточный для удовлетворения полового влечения (или, если судить по фотографиям, для сохранения сексуальной привлекательности). Вопрос о том, добьются ли эти ультра пуритане своего конечного вознаграждения, остается открытым. Крайняя степень калорийного ограничения, испытанная населением Голландии во время голодной зимы 1944-1945 годов, явно не оказала положительного эффекта на долгосрочные показатели смертности тех, кто ее пережил. Но здесь нам могут возразить, заметив, что нужны десятилетия практически голодной диеты для того, чтобы оценить ее преимущества.[280]

Калорийное ограничение дает хорошие результаты у крыс, мышей, плодовых мушек и червей-нематод. Почему так происходит, остается загадкой. Одно из объяснений возвращает нас к вредным воздействиям размножения. Животные, питающиеся с ограничением калорий, имеют меньше потомков, чем те, которые едят столько, сколько захотят. Возможно, те энергетические запасы, которые не расходуются из-за сокращения процесса воспроизводства, достаточны для обеспечения большей продолжительности жизни. Но, наверное, во всем этом есть и другой смысл. У плодовых мушек, питающихся с ограничением калорий, гены, ответственные за размножение, в основном отключены. Помимо этого, происходит включение генов, отвечающих за сопротивление инфекциям (иммунной системы мушек), что приводит к повышению производства иммунных белков по сравнению с обычным уровнем. Эти результаты объясняют по крайней мере две причины увеличения продолжительности жизни у животных с ограниченно калорийной диетой. Кроме них возможны десятки других объяснений. Около двух тысяч генов из пятнадцати тысяч генома мухи демонстрируют реакцию на калорийное ограничение. Вполне возможно, что магическое воздействие калорийного ограничения достигается за счет аккумулирования преимуществ десятков отдельных молекулярных механизмов.[281]

Этому вряд ли приходится удивляться. Эволюционная теория предполагает, что старение вызывается независимыми разрушениями в ряде различных систем. Если калорийное ограничение оказывает такое всепроникающее воздействие на организм, то и оно тоже должно способствовать поддержанию здоровья десятками самых разных способов. И все же некоторые геронтологи до сих пор ищут одно-единственное объяснение для всех разнообразных проявлений старения и того механизма, с помощью которого происходит их задержка при калорийном ограничении. Одно из предположений состоит в том, что старение развивается вследствие некоего скрытого отравления организма, причина которого заключена в самом существовании живого.

 

Дыхание смерти

 

"Мы именуем сон смертью, и все же убивает нас именно пробуждение", – заметил Томас Браун в "Религии медика". Мысль о том, что жизнь сама по себе есть причина нашего увядания – либо вследствие истощения некоего жизненного вещества, либо за счет постоянного самоотравления, – одна из самых древних в истории науки о старении. Новейшая интерпретация этой истины гласит, что старение вызывается крошечными вредоносными молекулами, способными окислять ДНК, белки, липиды – то есть практически все, с чем они контактируют. В ходе нормального дыхания кислород превращается в воду. Но этот процесс несовершенен, и в качестве побочных его продуктов образуется несколько разновидностей молекул, именуемых свободными радикалами. Эти молекулы, имеющие химическую формулу, например •OH (где • означает непарный электрон), особенно обильно представлены в митохондриях, субклеточных структурах, в которых и осуществляется процесс дыхания. Оттуда они проникают в остальную часть клетки, атакуя по пути другие структуры.

Теория свободных радикалов утверждает, что старение обусловлено накоплением тех повреждений, которые в течение многих лет наносят клеткам эти молекулы. Эта точка зрения подтверждается обилием соответствующих доказательств. Свободные радикалы, несомненно, повреждают клетку, и спектр этих повреждений по мере старения становится все более обычным. Опаснее всего то, что они вызывают мутации. ДНК каждой человеческой клетки за день получает до десяти тысяч окислительных повреждений. Часть из них компенсируется, а другие – нет. У старых крыс в одной клетке происходит около двух миллионов мутаций – вдвое больше, чем у молодых особей. Большая часть этих мутаций не оказывает воздействия на благополучие данной клетки. Но если радикал поражает ген, жизненно необходимый для существования клетки, это может ее убить. Если, допустим, пораженным оказывается ген контроля за пролиферацией в зародышевой клетке, может начаться рак. Если ущерб будет нанесен гену в тех клетках, из которых образуются спермии и яйцеклетки, повреждение будет передано будущим поколениям.[282]

Свободные радикалы явно вредоносны. Но действительно ли они являются причиной старения – хотя бы отчасти или полностью? Возможно, да. Животные-долгожители, родились ли они такими или сделались под действием калорийного ограничения, исключительно устойчивы к токсическим веществам, наподобие гербицидов, которые употребляются для борьбы с сорняками и вызывают появление свободных радикалов в организме. Более веские доказательства получены в ходе генетических манипуляций с разнообразными животными. Клетки животных содержат целый набор защитных механизмов против свободных радикалов, в том числе группу антиоксидантных ферментов, предназначенных для их уничтожения, например супероксиддисмутазу (superoxide disvutase – SOD). Ряд различных доказательств подтверждает, что эти ферменты способны предотвратить некоторые из проявлений старения.

Особенно активная форма супероксиддисмутазы как будто способствует удлинению жизни плодовых мушек, что возвращает нас к предыдущим результатам воспроизводства поколений геронтократов. Исходная популяция мушек в этих экспериментах была полиморфной по двум разновидностям супероксиддисмутазы. Отбор изменил частоты встречаемости этих вариантов, так что более активная форма стала намного более распространенной в популяциях мух-долгожителей по сравнению с их мало живущими родственниками. Это не было делом случая: эксперимент повторяли пять раз, и каждый раз результат был один. Еще более очевидные доказательства преимуществ этого фермента были продемонстрированы в экспериментах по генетическому инжинирингу, когда в двигательных нейронах мух была экспрессирована человеческая супероксиддисмутаза, несомненно намного более мощная по сравнению с мушиной. Эти мухи жили на 40 процентов дольше контрольных, не подвергшихся генетическим изменениям. Особый интерес эти эксперименты вызывают еще и тем, что указывают на способность супероксиддисмутазы защитить нервную систему. Наконец, в последние несколько лет у червей нематод и плодовых мушек были обнаружены мутанты, по-видимому наделенные свойствами к редкостному долгожительству (один из таких мутантов даже был наречен Мафусаилом, по имени библейского патриарха, который, по утверждению Книги Бытия, жил до 969 лет). У этих мутантов не изменяются последовательности самих генов супероксиддисмутазы, но, скорее, затрагиваются гены, которые отвечают за то, когда и как происходит процесс активации супероксиддисмутазы. По-видимому, трудно получить долго живущую мушку или червя без того, чтобы тем или иным способом не задействовать супероксиддисмутазу.

Все эти результаты позволяют выстроить следующую цепь аргументов: экстра-супероксиддисмутаза задерживает старение (по крайней мере у червей и мух); супероксиддисмутаза защищает организм от свободных радикалов; следовательно, свободные радикалы вызывают старение. Значит ли это, что способы по предотвращению собственного старения уже находятся у людей под рукой? Может, нам просто нужно сконструировать в себе более эффективный вариант супероксиддисмутазы и тем продлить годы жизни? Короткий ответ на этот вопрос оказывается отрицательным. Более того, после разъяснения причин, почему такой путь невозможен, возникают сомнения и в отношении всех предшествующих рассуждений.[283]

В наших геномах содержатся три гена, кодирующие супероксиддисмутазу. Мутации одного из них, SOD1, были известны давно. Это мутации утраты функции доминантного типа: они приводят к появлению гиперактивного белка. Казалось бы, именно эти мутации, по аналогии с плодовыми мушками и червями, и дадут человеку возможность жить до ста двадцати лет. На самом деле они убивают своих носителей лет в пятьдесят или около того. Мутации SOD1 вызывают боковой амиотрофический склероз (БАС), чрезвычайно тяжелое неврологическое заболевание, при котором происходит прогрессирующее разрушение двигательных нейронов спинного мозга, ствола мозга и двигательной коры, приводящее к параличу и смерти. В Америке эта болезнь носит имя Лу Герига, игрока в бейсбол, который страдал ею и от нее умер. Ни при каком другом заболевании вопрос об эвтаназии от руки врача не стоит с такой остротой, как при БАС.[284]

Эти мутации ставят нас в тупик. Они означают, что супероксиддисмутаза убивает мотонейроны у человека, но предохраняет их у мушек. Почему? За последние десять лет загадка была разрешена примерно следующим образом. Супероксиддисмутаза – всего лишь первый шаг на пути ферментативной нейтрализации свободных радикалов. Она превращает свободный радикал аниона кислорода, O•2, в другую молекулу Н2О2, более известную как перекись водорода, о разрушительном воздействии которой на биологические ткани можно судить по ее активной роли в процессе химчистки и при окрашивании волос в классический убийственный платиновый цвет. Для нейтрализации перекиси водорода и превращения ее в воду нужен еще один фермент – каталаза. Возможно, несбалансированность в активности этих двух ферментов вызывает у людей, но не у мух, накопление перекиси водорода в нейронах, что и приводит к их гибели.

Это разумное объяснение оказывается совершенно ошибочным.[285] Причина, по которой мутации SOD1 убивают мотонейроны, не имеет ничего общего ни со свободными радикалами, ни с отравлением перекисью водорода. Скорее их вредоносный эффект может быть связан с другой, слегка загадочной, ролью супероксиддисмутазы, которую она играет в мозге. Нейроны – странные клетки. Они большие, с длинными выступающими отростками, которые называются аксонами, и весьма специфичной клеточной архитектурой, которая при этом присутствует. Супероксиддисмутаза, помимо поглощения свободных радикалов, по-видимому, выполняет также определенную роль в создании этой архитектуры. Биологи позаимствовали симпатичное выражение для обозначения таких многопрофильных белков – они называют их "совместителями". Совместительство SOD1 может вызывать также еще одно неврологическое заболевание – синдром Дауна. У детей с синдромом Дауна имеется три копии 21-й хромосомы вместо обычных двух. Это та самая хромосома, на которой располагается ген SOD1. Сотни различных генов располагаются на этой же хромосоме, и любой из них может вызывать отчетливые проявления болезни Дауна (умственную отсталость, аномальные черты лица, проблемы с сердцем – мы перечислили лишь некоторые), однако именно лишняя копия SOD1 уже давно отнесена к разряду наиболее вредоносных.[286]

Если супероксиддисмутаза действительно "работает по совместительству", тогда приведенные выше рассуждения основаны на ложных предпосылках. А значит, отпадает одна из немногочисленных веских причин верить в то, что старение происходит из-за свободных радикалов. Сторонники этой теории (а среди ученых их наверняка найдется несколько тысяч) вполне могут считать, что это слишком жесткая оценка для объяснения одного из механизмов возникновения старения, который все же имеет хоть какие-то основания для более широких обобщений. Конечно, не исключена возможность, что кажущееся благоприятное влияние супероксиддисмутазы на увеличение продолжительности жизни целиком связано с уничтожением свободных радикалов, но это еще надо как следует доказать. В настоящее время, однако, найдется мало несогласных с тем, что супероксиддисмутаза должна быть вычеркнута из списка эликсиров, которые могут однажды приостановить наступление нашей старческой немощи.

 

Морщины

 

Даже если свободные радикалы служат не единственным и вовсе не главным источником мутаций, последние все же порождают, по крайней мере некоторые, характерные признаки старения. Мутации могут быть особенно разрушительными в таких тканях, как кожа, клетки которой делятся постоянно в течение жизни. Некоторые из нас сохраняют относительно моложавую внешность вплоть до глубокой старости, другие, будучи совсем молодыми, покрываются морщинами. Эти различия отчасти обусловлены воздействием на кожу атмосферных факторов, в первую очередь солнечного света, который получает каждый из нас, поскольку ультрафиолетовые лучи – мощный мутаген. Но даже защищенная от солнца кожа стареет. И сколько бы зонтиков, вуалей и защитных кремов мы ни использовали, кожа в тридцать пять лет никогда не будет такой сверкающей и гладкой, какой она была в пятнадцать.

Появление морщин – это признак глубинной неспособности клеток эпидермиса к замещению и поддержанию целостности соединительной ткани слоев кожи. Эта проблема касается всего нашего организма. Ее с очевидностью демонстрируют люди, кожа и соединительные ткани которых стареют с необыкновенной, можно сказать катастрофической, скоростью. Жертвы наследственного заболевания, именуемого синдромом Вернера, вынуждены седеть и лысеть еще в подростковом возрасте. В двадцать с небольшим лет у мужчин атрофируются яички, а у женщин – фолликулы яичников, что приводит к специфической преждевременной менопаузе. На четвертом десятке больные нуждаются в трансплантации хрусталика для лечения катаракты, а их артерии отвердевают и покрываются жировыми отложениями. В сорок с лишним они умирают, обычно от инфаркта.[287]

Синдром Вернера входит в группу наследственно обусловленных заболеваний ускоренного старения, объединенных под общим названием "прогерия". Сам синдром вызывается мутациями, которые выводят из строя белок, поддерживающий целостность ДНК во время репликации. В отсутствие этого протеина в клетках развивается очень высокая скорость мутаций. Мутационный обвал приводит к гибели, а не пролиферации клеток, или даже к продуцированию аномальных белков. Ткани, которые для сохранения целостности зависят от наличия большого количества делящихся клеток, такие, например, как кожа, деградируют. Возможно, нечто подобное происходит со всеми нами, только значительно медленнее.

 

По мере старения жизненная сила уходит из наших клеток. Это можно продемонстрировать в лаборатории. Давно известно, что с помощью сложных и тонких методов можно выращивать человеческие клетки в чашках Петри. Однако вне зависимости от качества условий окружающей среды, сколь бы благоприятными они ни были, свежевыращенные клетки будут делиться лишь ограниченное число раз, а затем прекратят деление. Их упадок происходит постепенно и вызывается некоторыми внутренними ограничениями. По мнению многих, клеточное старение есть не просто следствие старения организма, а его непосредственная причина.

В подтверждение этой идеи клетки, взятые от плодов человека, прежде чем погибнуть, способны делиться на протяжении вдвое большего числа поколений по сравнению с теми, которые получены от девяностолетних стариков. Тогда, наверное, у пожилых людей множество клеток приближаются к завершению своей репликационной карьеры и в силу этого не могут больше компенсировать получаемые ущербы и дефекты, как они это делали раньше. Поэтому, когда в 1998 году были обнаружены молекулярные причины ограничения клеточных делений и барьеры эти впоследствии были преодолены, все пришли в волнение. Если можно вылечить клеточное старение, значит, вероятно, и саму старость. Всякий раз, когда клетка делится, должны удваиваться и ее хромосомы. Но ферменты, участвующие в репликации ДНК хромосом, не способны удваивать концы хромосом.

Поэтому эти концы, защищенные последовательностями длиной в тысячи пар оснований и называемые теломерами, постепенно укорачиваются в процессе многих клеточных делений со скоростью около ста пар оснований на одно деление. Если теломеры исчезают, клетки больше не могут делиться и умирают. Именно скорость исчезновения теломеров лежит в основе фундаментального механизма старения. По крайней мере, так это выглядит сегодня.

В таком случае необходимо найти способ по предотвращению изнашивания теломеров. Далеко не все клетки расстаются со своими теломерами. Зародышевые клетки, производящие яйцеклетки и спермии, обладают сложным ферментом, так называемой теломеразой, которая сохраняет теломеры, обеспечивая тем самым столь необходимое для этих клеток бессмертие. Утрата теломеров всеми остальными клетками тела происходит как раз оттого, что они не содержат этого фермента. Если путем инжиниринга внедрить теломеразу в клетки, которые обычно ее не имеют, то в процессе множества делений теломеры будут сохранены, и клетки обретут бессмертие.[288]

Если дорога к клеточному бессмертию столь проста, почему бы нам ею не воспользоваться? Причина довольно банальна: бесконечность – это свойство рака. Почти все опухолевые клетки на какой-то стадии своего существования перенесли мутацию, вызвавшую у них появление теломеразы, которая у здоровых клеток не присутствует. Отсутствие теломеразы в наших клетках – это, вероятно, один из основных защитных механизмов, которым мы располагаем против размножения чужеродных клеток. Кроме того, пока еще совсем неясно, что укорочение теломеров действительно вызывает старение. Только в одном из экспериментов эта проблема решалась напрямую: когда мыши с дефектом теломеразы были вначале выведены с помощью генной инженерии, а затем размножались в течение шести поколений.[289]

Мыши, судя по всему, вполне могут обходиться без теломеразы, по крайней мере – в течение некоторого времени. Первое поколение дефектных по теломеразе мышей, когда оно было получено, не проявляло никаких признаков преждевременного старения. Некоторым образом, в этом не было ничего удивительного. У этих мышей теломеры были столь же длинными, как и у всех остальных, поскольку мыши, подобно людям, наследуют свои теломеры от родителей, а их родители были в этом отношении нормальными. Однако потребность в теломеразе со стороны зародышевых клеток приводила к тому, что каждое последующее поколение мутантных мышей вступало в жизнь со все более короткими теломерами. Эффект проявился у четвертого поколения мышей, когда у самцов значительно сократилось количество живых спермиев. К шестому поколению они вообще исчезли. Самки не сделались стерильными, но стали продуцировать меньше яйцеклеток, чем обычно; к тому же из этих производимых ими яйцеклеток часто развивались дефектные эмбрионы. К шестому поколению и самцы и самки начали преждевременно стареть. Как и люди, мыши с возрастом лысеют и седеют. Так случилось с мышами шестого поколения, пока они были еще совсем юными.

Эти результаты в лучшем случае могут служить подтверждением, хотя и неоднозначным, того положения, что потребность в теломерах является причиной старения. Достаточно короткие теломеры определенно могут вызывать преждевременное старение, но поскольку это происходит только у животных шестого поколения после их изнашивания, они не могут считаться причиной нормального старения у мышей. Весьма соблазнительно отказаться от укорочения теломеров как причины, объясняющей старение также и у людей, но, вероятно, делать это пока рано. У лабораторных мышей исключительно длинные теломеры – куда длиннее, чем у нас. Если наши теломеры в самом начале человеческой жизни уже достаточно коротки и должны, за счет наших крупных размеров и долгой жизни, расходоваться гораздо интенсивнее, чем у мышей, тогда сохраняется вероятность, что они все же кое-что значат и для нас.[290]

Одним из способов доказать это утверждение может стать клонирование человека. Клоны должны вступать в жизнь с аномально короткими теломерами, поскольку они появляются на свет без помощи зародышевых клеток и, следовательно, их теломеры никогда не возобновляются. Последовательные поколения клонов должны обладать постоянно укорачивающимися теломерами, а скорость их старения должна стремительно возрастать, тем более в том случае, если донорский организм не был молодым. Глобальный запрет на клонирование человека не позволяет рассчитывать на скорое проведение такого эксперимента – разве что на это решатся одержимые уфологи или итальянские отступники-акушеры. Но, разумеется, есть данные, полученные на животных. Овечка 6LL3, известная по кличке Долли, получила свои хромосомы из клеток молочных желез шестилетней овцы финско-дорсетской породы. По этой причине она начала свою жизнь с довольно-таки короткими теломерами. Многие считали, что она будет рано стареть. Однако, если не считать кое-какого артрита, она оставалась вполне здоровой. В вирусном заболевании, которое ускорило ее эвтаназию в шестилетнем возрасте, не было ничего необычного.[291] Клоны других животных, будь то крупный рогатый скот или мыши, часто страдают от разных нарушений здоровья, например таких, как ожирение, но ни у одного из них не было описано случаев прогерии. Но все это, так сказать, дела давно минувших дней.[292]

Много информации может быть получено также от людей, мутантных по теломеразе. Помимо синдрома Вернера есть еще один тип прогерии, более редкий и еще более тяжелый, при котором организм начинает катастрофически стареть еще в детстве.[293] Жертвы этого заболевания обычно умирают лет в двенадцать или около того, опять-таки от инфаркта, причем к этому моменту они по внешнему виду в точности напоминают маленьких старичков. Подобные симптомы заставляют вспомнить о дефектах теломеров. Даже если эту страшную болезнь удастся объяснить с позиций слишком быстрого клеточного старения, мы лишь на малую толику проникнем в тайны старости. Ибо прогерия, ускоряя некоторые проявления физической деградации, оставляет в неприкосновенности разум своих жертв.

 

Жить до ста

 

За последние десять лет в изучении стaрения произошла настоящая революция, которая по большей части связана с исследованиями червя нематоды Caenorhabditis elegans. Этот червь достигает в длину всего 1 миллиметра, так что в чашке Петри его можно выращивать тысячами. Черви эти абсолютно прозрачны, и посредством мощного микроскопа можно разглядеть каждую из 959 клеточек, которые содержатся в их живых телах. По какой-то причине в процессе экспериментов оказалось особенно легко идентифицировать мутантных червей, отличавшихся необыкновенным долгожительством. Некоторые из этих червей жили вдвое дольше обычных – сорок два дня, что на человеческий масштаб составляет сто пятьдесят лет.

На сегодняшний день у червей идентифицирована по меньшей мере сотня генов, мутации которых заставляют животных жить дольше. Многие из этих мутаций выводят из строя механизмы стимуляции инсулиноподобного фактора роста (IGF), вследствие чего меняется вся физиология червя. Мутантные черви с дефектами стимулов IGF хуже размножаются, делают запасы большого количества жира и cахаров, активизируют целую батарею генов, кодирующих устойчивые к стрессу белки, в том числе и супероксиддисмутазу. В результате в чашках Петри появляются черви, излучающие здоровье, в то время как их обычные сородичи там же чахнут на глазах.

Мы уже сталкивались ранее с инсулиноподобным фактором роста. Именно недостаток этого гормона делает пигмеев маленькими, а его избыток отвечает за гигантские размеры немецких догов. Он – один из тех гормонов, который при инактивации его у мышей делает их долго живущими карликами. У червей IGF, похоже, не контролирует размеры тела (что достойно удивления, поскольку у многих других созданий, включая фруктовых мушек, он выполняет именно эту функцию). Но даже при таком условии, на основании полученных на червях результатах, а также с учетом исследований IGF, проведенных на мышах, мухах и многих других существах, можно в общих чертах обрисовать механизм, вероятно, универсальный для всех животных, который позволяет им жить дольше, если в этом возникает необходимость.

Черви не отличаются особым интеллектом. Нервная система любой особи, включая и ту структуру, которая у них называется мозгом, состоит всего лишь из 302 нейронов. Человеческий мозг содержит в миллионы раз больше нервных клеток. При всем при том у червя хватает ума, чтобы понять, сколько еды ему дали. Когда он чувствует, что предстоит поголодать, нейрональные сигналы от органов чувств, расположенных в его голове, передаются остальному телу, и сигнальный механизм IGF блокируется. Изменение условий жизни имитирует то, что происходит в организме многих мутантов. Результат же остается прежним: червь живет дольше.[294]

Все это нам уже знакомо. Именно так обстоит дело при ограничении калорий в диете мышей и крыс. И здесь можно найти объяснение того, как и почему размеренная жизнь оказывает столь благоприятный эффект. Реакция организма на калорийное ограничение – вовсе не только странный лабораторный феномен, представляющий интерес лишь для геронтологов и специалистов по питанию, мечтающих о человеческом бессмертии. Это, вероятно, тот самый механизм, который развивался в процессе эволюции, чтобы помочь животным справиться с превратностями судьбы. Понимая, что впереди его ждут тяжелые времена, молодой организм изменял свой образ жизни. Вместо инвестирования ресурсов в ускоренный соматический рост и быстрое размножение, он переключался на программу выживания, оставаясь мелким и прекратив репродукцию, но, в сущности, делая ставку на то, что лучшие времена – раньше или позже – настанут. Если такая точка зрения на калорийное ограничение верна, тогда ее сторонники стремятся достичь не менее, чем возрождения эволюционных механизмов, позволявших нам справляться с лишениями и тяготами, которые наверняка были уделом людей на протяжении миллионов лет их предыстории (и, конечно, немалой части истории). Они не подозревают, что, высчитывая энергетическую ценность своего рациона до последней калории, окружая себя бутылочками с витаминами и ежемесячно, как положено, проверяя плотность костей, они играют роль самых ревностных противников цивилизации.

 

Можно ли обнаружить гены долгожительства у людей? Многие ученые полагают, что да. Во Франции, Англии, Голландии, Японии, Финляндии и Соединенных Штатах геронтологи деловито составляют списки столетних жителей этих стран и анализируют их ДНК, чтобы выяснить, почему они так долго живут. Они поступают так, не рассчитывая найти одну-единственную мутацию или полиморфизм, которым обладали бы все долгожители. Более того, они полностью признают, что многие из старцев смогли дожить до такого возраста, потому что дополняли везенье достойным образом жизни. Научный подход скорее состоит в том, чтобы исследовать множество генов, которые, по той или иной причине, считаются ответственными за болезни пожилого возраста, и найти их варианты, наиболее распространенные у лиц, доживших до глубокой старости по отношению к остальной популяции.

Один из первых таким образом идентифицированных генов долгожительства стал аполипопротеин E (APOE). Белок, кодируемый этим геном, существует в нескольких полиморфных вариантах, называемых ε2, ε3 и ε4. Около 11 процентов французских мужчин и женщин не старше семидесяти лет несут как минимум одну копию аллеля ε4, но у столетних французов этот показатель опускается до 5 процентов; разница восполняется за счет варианта ε2, который становится более распространенным. Это означает, что, помимо желания отпраздновать столетний день рождения, каждому из нас хорошо бы иметь по крайней мере одну копию ε2 и вовсе не иметь ε4.

Так происходит из-за того, что ген APOE, который кодирует белок, включенный в перенос холестерина, играет роль в развитии болезни Альцгеймера.[295] Примерно у одного человека из десяти в возрасте шестидесяти пяти лет есть шансы стать жертвой Альцгеймера, но они неизмеримо возрастают, если человек является носителем варианта ε4. Одна копия ε4 по сравнению с ее отсутствием увеличивает риск развития болезни Альцгеймера втрое; две копии – в восемь раз. Если и этого недостаточно, тогда отметим, что ε4 также предрасполагает к сердечно-сосудистым заболеваниям. При такой удвоенной молекулярной ответственности за развитие тяжелых заболеваний нетрудно понять, почему редко кто из носителей ε4 доживает до преклонного возраста.[296]

Все эти рассуждения, однако, мало что значат, если у вас темная кожа. Исследования по распространению генов АРОЕ показали, что вариант ε4 широко распространен на территории Африки к югу от Сахары. Почти у половины африканских пигмеев встречается как минимум одна его копия. Означает ли это в действительности, что у пигмеев эфе свирепствует болезнь Альцгеймера? Краткий ответ состоит в том, что мы этого не знаем. Эпидемиологические исследования относительно распространенности болезни Альцгеймера среди пигмеев никогда не проводились, и выполнить их довольно затруднительно, поскольку из-за высокой смертности от инфекционных заболеваний и несчастных случаев мало кто из пигмеев доживает до такого возраста, когда появляются признаки болезни Альцгеймера. Это само по себе может объяснить причины широкого распространения ε4 в их популяции, однако более вероятное объяснение состоит в том, что вышеупомянутый аллель менее опасен для африканцев, чем для европейцев. Почему – остается загадкой.[297]

Генетика болезни Альцгеймера, по крайней мере у европейцев, является прекрасной иллюстрацией к эволюционной теории старения, пожалуй, даже еще более убедительной, чем пример с хореей Гентингтона. Даже среди явно подверженных заболеванию (белых) французов ε4 представлен в таком летальном варианте, что его распространение можно объяснить только одним: он оказывает низкий совокупный эффект на репродуктивный успех носителей. Что сильно контрастирует с другими генами, вызывающими болезнь Альцгеймера. Мутации по меньшей мере трех других генов приводят к этому заболеванию. Однако их действие проявляется уже к тридцатилетнему возрасту носителей, которые погибают в самом расцвете сил. Таким образом, гены полностью подвержены действию естественного отбора и потому редки.[298]

Подобные результаты – только начало. Через несколько лет будут обнаружены десятки, если не сотни полиморфных генов, которые способны либо продлевать нам жизнь, либо укорачивать ее. Большая часть этих генов будет либо ускорять, либо задерживать развитие признаков старения, с которыми мы уже знакомы: старческое слабоумие, артериосклероз, почечную недостаточность, болезни простаты, менопаузу, рак и тому подобное. Ни один из геномов конкретного человека не будет обладать всеми генными вариантами, которые благоприятствуют долгожительству. Это ясно уже из того разнообразия путей, которыми определяется наш уход из жизни. Но, владея такими данными, можно будет описать относительный риск обладания данной совокупностью генов в статистических терминах. На основе нижеприведенных примеров можно представить, как это будет происходить. Если при прочих равных условиях геном какого-нибудь сорокалетнего человека будет характеризоваться следующими вариантами:

 

SRY(−/−); APOE(ε2/ε2); ACE(D/D); MTHFR(Ala222/Ala222),

 

то его обладатель меньше подвержен риску развития сердечно-сосудистых заболеваний, а следовательно, и ежегодному риску смертности, чем другой индивид со следующим сочетанием генов:

 

SRY(+/−); APOE(ε4/ε4); ACE(I/I); MTHFR(Val222/Val222).

 

Различия между двумя вышеприведенными записями не несут в себе никакой тайны. Имеются четыре гена SRY, APOE, АСЕ и MTHFR, каждый из которых обладает двумя вариантами, связанными, как хорошо известно, с различиями в показателях смертности у людей среднего и пожилого возраста. В таком случае эти две записи представляют собой некую прогностическую оценку старения, которую, однако, нельзя считать более обоснованной, чем утверждение, будто тот, кто не курит, не пьет, не водит машину и не занимается сексом, в целом проживет дольше того, кто это делает. Только в приведенном выше примере все факторы риска заключены в геноме.

Обладание вторым вариантом генома вовсе не обязательно предрекает раннюю смерть. И хотя нельзя путем диеты избежать болезни Альцгеймера, для предотвращения инфаркта можно сделать многое. То, что гены наделяют нас различными шансами окончить свою жизнь в любом известном возрасте, кажется почти доказанным, но перевести генетические различия в разницу непрожитых лет пока невозможно. Для этого необходимы крупномасштабные популяционные исследования, которые еще не выполнены, но наверняка стоят на очереди.[299] Правда, из этого правила есть исключения. В США люди с сочетанием SRY(−/−) живут в среднем на пять лет дольше обладателей SRY(+/−), и с этим ничего нельзя поделать – разве что пожать плечами с неким галльским безразличием и пробурчать: "Vive la différence!" – "Да здравствуют различия!"

 

Только вверх

 

1994 год ознаменовался исключительным событием: в тот год не умерла ни одна из восьмилетних шведских девочек. Ни одна не стала жертвой гриппа; ни одна не попала под автобус. И в начале и в конце года число их составило 112 521. Конечно, это была статистическая случайность. В том же году умерло несколько восьмилетних шведских мальчиков, так же как и семи- и девятилетних девочек, а в следующем году умерло и несколько восьмилеток обоего пола. Но то, что в означенный год выжили все эти шведские девочки, можно рассматривать как знак величайшего свершения индустриальной цивилизации – успешной защиты детей от гибели.

Показатели детской смертности в экономически развитых странах становятся в наши дни бесконечно малыми, в особенности если не брать в расчет несчастные случаи или насильственную смерть. Именно это достижение, которое цивилизация стремилась воплотить на протяжении по меньшей мере последних двухсот пятидесяти лет, лежит в основе постепенного подъема к максимальным показателям продолжительности жизни человека. До 1750 года ожидаемая продолжительность жизни новорожденного составляла двадцать лет; сегодня в самых богатых странах любой только что родившийся младенец может рассчитывать дожить примерно до семидесяти пяти лет. По большей части столь разительное увеличение сроков человеческой жизни следует приписать уничтожению инфекционных заболеваний, которые поражали преимущественно юных членов общества. Удивительно, пожалуй, другое: хотя в наиболее развитых странах задачу предотвращения детской смертности можно считать решенной, ожидаемая продолжительности жизни там по-прежнему растет.

Шестидесятые годы XX века были, так сказать, революционными. Но параллельно с бурей и натиском культурной и сексуальной революций происходило нечто куда более важное: в это же время начали снижаться показатели смертности пожилых людей.[300] Американская женщина, которой в 1970 году исполнилось восемьдесят лет, имела 30-процентный шанс прожить еще десять лет. В 1997 году этот же шанс для восьмидесятилетней женщины возрос до 40 процентов. Нечто подобное происходит и в Швеции. В период с 1860 по 1960 год возраст, в котором умирали самые старые шведы, постоянно увеличивался – со скоростью примерно 0,4 года за десятилетие. Между 1969 и 1999 годами этот показатель резко возрос – до 1,1 года за десятилетие. Иными словами, начиная с какого-то времени люди стали жить дольше, но после 1960-х тенденция заметно ускорилась.

Такие цифры говорят нам о том, что старение можно не только вылечить, но и что существует великое множество способов лечения. Если рассматривать старение как зависящее от возраста увеличение коэффициента смертности, тогда все, что снижает этот показатель, можно, по определению, считать лекарством от старости. Уменьшение коэффициента смертности у стариков в основном связано с тенденцией нескольких последних десятилетий к снижению распространения сердечно-сосудистых заболеваний и рака. Сердечно-сосудистые заболевания были основной причиной смертности населения в Соединенных Штатах начиная с 20-х годов прошлого столетия, но между 1950 и 1996 годами их вклад в показатель смертности уменьшился почти наполовину. В Японии процент онкологических заболеваний начал снижаться уже в 1960-х годах; в остальных развитых странах подобная тенденция проявилась примерно на два десятилетия позже. В этом, конечно, нет ничего сверхъестественного, кроме стабильного прогресса в сфере общественного здравоохранения.

Однако стабильный прогресс здравоохранения – это, пожалуй, все, на что мы вправе рассчитывать. Теория эволюции и постоянно растущий поток информации относительно генетики старения, то ли преждевременного, то ли, наоборот, замедленного, говорят нам, что старость есть множество болезней, которые одна за другой должны быть излечены. В то же время на пути этого прогресса нет никаких преград – ничего такого, что заставляло бы нас думать о наличии фиксированного срока человеческой жизни. В 1994 году в возрасте восьмидесяти лет умерли 1674 шведские женщины. Невозможно предсказать, какие именно открытия в области медицины смогут гарантировать такую ситуацию, чтобы в будущем все женщины этого возраста продолжали жить. Но когда такой день настанет, он будет знаменовать собой завершение второго грандиозного проекта современной индустриальной цивилизации, направленного на защиту стариков от смерти.

 

 

Глава X

Антропометаморфозы

[эпилог]

 

Череп австралийского аборигена, Земля Арнем.

Из книги Армана де Катрфажа "Crania ethnica: черепа человеческих рас", 1882.

 

Авторы книг по генетике, по крайней мере книг, предназначенных для широкого читателя, часто расходятся во мнениях, а если в чем-то и сходятся, так либо в предсказаниях о будущем человечества, либо в морализировании по поводу этого будущего. Иногда, правда, в их трудах можно найти и то и другое. Прогнозы неизбежно основаны на той роли, которую "новые генетические технологии" – массовые генетические обследования, селекция эмбрионов, клонирование, модификация зародышевых линий и тому подобное – будут играть в жизни индивидов и групп. Некоторые из пишущей братии полны оптимизма и уверяют нас, что все технологии ничто по сравнению с величайшими демографическими движущими силами, такими как рождаемость или миграции, которые формируют генофонд нашего вида. Другие с поразительным хладнокровием рисуют картину трансформации человеческого рода в нечто, напоминающее высокоинтеллектуальное растение. Есть такие, как правило – среди научных обозревателей в средствах массовой информации, кто хочет получить собственные клоны, другие выражают желание так реструктурировать налоговую систему, чтобы она удерживала людей с наследственными заболеваниями от воспроизводства. Кое-кто – так называемые приверженцы этического развития, биологи-диалектики и священнослужители – напыщенно говорят о "человеческом достоинстве", активно бранят "генетический детерминизм" или туманно намекают на "этические дилеммы, стоящие перед всеми", редко нисходя до объяснений, что под этим подразумевается.[301]

Я предлагаю не поддаваться соблазну пойти по одному из таких путей. Я не знаю будущего, а мои взгляды на моральные проблемы клонирования людей, инженеринга зародышевых линий или любого другого технологического приема не являются ни глубоко продуманными, ни хоть в чем-то уникальными, чтобы их можно было выставить на публичное обсуждение. Эта позиция вызвана не трусостью, а, скорее, благородством – по крайней мере, так мне хочется думать. Вместо сентенций я закончу эту книгу, которая повествует о множестве вещей, известных нам относительно строения человеческого тела, некоторыми мыслями о том, чего мы не знаем и – по крайней мере я – хотели бы узнать.

 

Я хочу больше знать об изменчивости. Эта книга посвящена преимущественно редким мутациям, наносящим ущерб организму. Если я и упоминал об изменчивости, то только мимоходом. Под изменчивостью я подразумеваю нормальные вариации человеческой внешности и признаков, которые мы видим у окружающих нас здоровых людей. Я имею в виду изменчивость, которая существует в пределах самой маленькой шотландской деревушки с ее кареглазыми, зеленоглазыми и голубоглазыми обитателями. Кроме того, я имею в виду различия по форме тела между популяциями, живущими по соседству, но чем-то друг от друга отличающимися, как, например, в случае низкорослых пигмеев и высоких банту. Я также понимаю под изменчивостью особенности цвета кожи, курчавости волос и формы глаз, которыми в большей или меньшей степени отличаются друг от друга народы, связанные своим происхождением с разными континентами. В таком случае одна из тем, о которой я хочу знать больше, связана с расой.

В течение долгого времени понятие "раса" находится под прицелом критики. Среди ученых атакой руководят генетики. Их нападки основаны на двух эмпирических выводах, полученных в результате изучения характера генетической изменчивости по всему земному шару. Первым стало открытие того, что большая часть разнообразия, столь характерного для наших геномов, вовсе не делит человечество на группы, которые соответствовали бы традиционным антропологическим или общепринятым представлениям. Все гены присутствуют в различных вариантах, даже если большая часть из них "молчит" и не влияет на структуру кодируемых ими белков. Некоторые варианты с неизбежностью чаще представлены в одних частях света по сравнению с другими. Но широта распространения или, наоборот, редкость отдельных генных вариантов в разных областях земного шара не совпадает с традиционными границами расовых ареалов. Обычно считается, что границы между расами должны быть резкими, а изменения частот генных вариантов, как правило, сглажены. Изменения частот разных генов могут также не согласовываться между собой. Если разделить человечество на некие сегменты, большая часть генов попросту не обнаружит, к какому именно отсеку относится.

Другое открытие, которое заставило – и заставляет – генетиков сомневаться в существовании рас, – это широкое распространение генетического разнообразия даже в пределах самых маленьких популяций. Около 85 процентов всего спектра генетической изменчивости можно обнаружить внутри любой страны или популяции – к примеру камбоджийцев или нигерийцев. Еще около 8 процентов отличают друг от друга народы – скажем, голландцев от испанцев. Таким образом, остаются какие-то жалкие 7 процентов или около того на все разнообразие различий между континентами или, при наиболее либеральной интерпретации термина, "расами". Конечно, между голландцем и представителем племени динка существуют генетические различия, но они не больше тех, которые свойственны двум любым уроженцам города Делфт.

Эти факты относительно генетической изменчивости человека были известны давно, еще в 1960-х годах. С тех пор каждое десятилетие тому находились новые подтверждения, снабженные еще более внушительным количеством данных, полученных с использованием все более продвинутых способов обнаружения и анализа генетического разнообразия. В 1960-х генетическую изменчивость изучали с помощью миграции различных белков на геле; сегодня методом изучения служит секвенирование целых геномов. Поколения ученых интерпретировали результаты своих исследований приблизительно так, как сделал это здесь я, уверенно утверждая, что расы, по крайней мере в генетическом смысле, не существуют. Они представляют собой искусственные образования, социальные понятия или же остатки дискредитированных идеологических систем.[302]

Однако большинству людей такие доводы казались неубедительными. Они восприняли главную мысль: расы сегодня – почему-то не совсем то, чем они были раньше. И лучше вообще избегать этого слова, заменяя его термином "этническая принадлежность" или чем-то подобным, что дает возможность удачно соединить культурные и физические варианты. Для некоторых настаивание на существовании рас есть проявление стойких расистских взглядов. Я полагаю, что они не правы. По-моему, уроки генетиков столь широко игнорируются именно потому, что они явно противоречат фактам, которые находятся у нас перед глазами. Если расы не  существуют, тогда почему же при мгновенном взгляде на лицо незнакомца мы можем распознать континент, а иногда и страну, в которой жили он или его предки?

Ответ на этот вопрос следует искать в тех самых у процентах, сколь жалкими они бы нам ни казались, которыми отличаются люди в разных частях света. Семь процентов – действительно малая часть от общего генетического разнообразия, однако она достаточно велика, чтобы заключать в себе наличие сотен, а может быть, и тысяч полиморфных генов, которые являются обычными и широко распространенными на одном континенте и редкими или даже отсутствующими на другом. В последние годы некоторые генетики занялись поиском таких вариантов. Они известны под названием "Информативных маркеров происхождения" ("Ancestry Informative Markers" – AIMs), названных так потому, что могут действительно приблизительно сообщить, откуда происходят ваши предки, или даже разобраться с ними, если они – как это часто бывает – происходят из разных мест. Поиски AIMs, которые поначалу фокусировались на африканских и европейских популяциях, но теперь постепенно охватывают и другие группы, ведутся в надежде найти генетические основы некоторых заболеваний, например диабета 2-го типа, риск развития которого различается у африканцев и европейцев.[303]

Многие AIMs yже обнаружены. Для некоторых из них причины их присутствия на одном континенте и отсутствия на другом вполне очевидны. Один из вариантов гена FY (Duffy) широко встречается у африканцев, но крайне редок среди других народов. Африканский вариант выглядит странным, поскольку он препятствует продукции белка, кодируемого геном FY. Все остальные варианты способствуют образованию белка, хотя его форма также может варьировать. Белок FY – это рецептор фактора роста на клетках крови, которым как будто пользуются также и малярийные паразиты, поэтому его отсутствие у африканцев можно почти наверняка считать результатом длительного действия естественного отбора для защиты от болезни. Факт отсутствия FY у африканцев и его наличия в других частях света был известен на протяжении нескольких последних десятилетий.[304] В наши дни обнаружены многие другие отличия, хотя обыкновенно и не столь разительные, как в случае с FY. Никто не знает, каковы функции большинства AIMs и почему они встречаются в том, а не другом месте.

Тем не менее где-то среди всех этих AIMs находятся гены, благодаря которым китайский ребенок народности хань будет иметь характерную складку верхнего века, а житель Соломоновых островов – темный, граничащий с лиловым, цвет кожи. Среди них будут находиться также гены, определяющие форму нашего черепа. Измерение черепов имеет давнюю традицию в антропологии. Одним из первых по-настоящему грамотных измерителей был голландец Петрус Кампер, который в XVIII веке изобрел "лицевой угол", по сути – показатель лицевой уплощенности. На своей знаменитой схеме Кампер изобразил серии голов и черепов, куда входили низшая обезьяна, орангутан, африканец, европеец, греческая статуя, с постепенно уменьшающимся лицевым углом. Сам Кампер не был расистом. В своих трудах он неоднократно подчеркивал тесное родство между всеми людьми независимо от их происхождения. "Протяните вместе со мной, – призывал он в 1764 году, – братскую руку неграм и признайте в них истинных потомков первого человека, на которого все мы должны смотреть как на нашего общего прародителя". К этому он добавлял, что первый человек мог быть белым, коричневым или черным и что европейцы – просто "белые мавры", причем все это он писал в то время, когда Линней делил человечество на расы.

 

 

Вариации человеческих черепов.

Из книги Армана де Катрфажа "Crania ethnica: черепа человеческих рас", 1882.

 

К сожалению, рисунки Кампера убеждали больше его же собственных слов, а схема, скрыто демонстрирующая восхождение от обезьяны к Аполлону (где африканцы располагались намного ближе к обезьянам, чем к божествам), стала краеугольным камнем антропологии XIX века. Нет нужды повторять или критиковать результаты краниометрических исследований, выполненных в XIX – начале XX века, которые ставили целью показать, что одно из подразделений человечества обладало большим или меньшим интеллектом по сравнению с другим. Многие авторы уже писали об этом с таким тщанием, которого едва ли заслуживают научные достоинства подобных исследований.[305] Стоит отметить, однако, что современные специалисты в области физической антропологии продолжают испытывать интерес к описанию формы черепа, хотя сегодня они используют для этого трехмерные лазерные сканнеры и многомерную статистику. Они приходят к выводу, возможно не вызывающему удивления, что при всем внутрипопуляционном разнообразии люди из разных частей света характеризуются различной формой головы.

В согласии с утверждениями Кампера, у людей из африканской суб-Сахары челюсти действительно  в среднем выступают вперед больше по отношению к вертикали лба, чем у европейцев. Этот признак известен под названием "прогнатизм". Меланезийцы и австралийские аборигены также более прогнатны, чем европейцы. Противоречит  выводам Кампера, однако, то, что эта характеристика не делает африканские (или аборигенные) черепа ближе к обезьяньим, чем к европейским, черепам. Лицевой угол – это довольно-таки грубый способ описания чрезвычайно сложных особенностей формы черепа. Он не делает различий между разными аспектами прогнатизма. У шимпанзе высокие значения лицевого угла обусловлены наклоном всей лицевой части и лба; у африканцев и австралийских аборигенов более высокие значения угла по сравнению с европейцами вызваны исключительно выступанием челюстей. Кроме того, европейцев вовсе нельзя считать самыми плосколицыми. Этой привилегией, если она таковой является, обладают инуиты Северной Канады.

Человеческие черепа изумительно разнообразны. Инуиты также отличаются очень крупными глазницами и массивными скуловыми костями. По сравнению со всеми остальными людьми народы койсанской группы в Южной Африке обладают выступающими лобными костями (нависание лба); у аборигенов Австралии – массивные брови (надбровные дуги); у некоторых обитателей африканской суб-Сахары широко расставлены глаза (большое межорбитальное расстояние); у жителей Андаманских островов (негритосов) – небольшие круглые черепа. Список различий можно продолжать до бесконечности. Немногие из этих различий являются абсолютными. Подобно тому как большая часть разнообразия генных частот обнаружена внутри, а не между популяциями (народами, континентами), изменчивость формы черепа в основном характеризуется теми же закономерностями. А все различия между популяциями очень незначительны. Австралийские аборигены и инуиты отличаются по показателю выступания челюстей (прогнатизму) всего лишь на 6 процентов. Да, различия невелики, но, принимая во внимание то значение, которое мы придаем лицам друг друга, они сразу же бросаются в глаза.[306]

Мое убеждение в том, что вскоре мы сможем идентифицировать гены, ответственные за вариации формы черепа, заключает в себе важный вопрос: а есть ли вообще такие гены? В 1912 году американский антрополог Франц Боас решил продемонстрировать, что их нет. Он был человеком, стоявшим на позициях гуманизма и толерантности, непримиримым оппонентом тех, кто пытался провести обидные границы между людьми на основе формы их черепа. Приведенная ниже цитата из одной серьезной антропологической статьи, написанной в 1905 году немецким зубным врачом по фамилии Рёзе, поможет понять, против чего боролся Боас: "Длинные головы людей германского происхождения характеризуют носителей более высокой духовной жизни, обладателей верховных позиций, которые предназначены им природой, истинных защитников отечества и социального порядка. Все их свойства предопределяют их аристократическую сущность".[307] И так далее, вплоть до осуждения более демократически мыслящих и негерманских "круглоголовых".

"Длинные" и "круглые" головы определяются значениями "головного указателя", представляющего собой отношение ширины черепа к его длине, выраженное в процентах. У длинноголовых, или долихоцефалов, головной указатель ниже 75; у круглоголовых, или брахицефалов, – выше 80; мезоцефалы характеризуются промежуточными цифрами. Заметив, что эмигранты, прибывающие на остров Эллиса, – богемские чехи, словаки, венгры, итальянцы, шотландцы и восточноевропейские евреи – несколько отличаются по своему головному указателю, Боас задался вопросом, являются ли эти различия генетическими (согласно его терминологии – "расовыми") или же обусловлены влиянием среды. Он вполне обоснованно рассуждал, что если головы детей, родившихся в Америке у представителей всех этих групп, будут больше похожи друг на друга, чем на головы тех, кто родился в Европе, значит, условия среды, а не происхождение являются причиной различий. Боас измерил около 13 тысяч голов – грандиозный проект, который, в отсутствие компьютера, погрузил его в нескончаемый поток цифр.[308] Тем не менее он сумел вычертить график, который как будто показывал, что значения головного указателя у родившихся в Америке детей сицилийцев и восточноевропейских евреев и вправду сближаются друг с другом (отметим, что обе группы изначально были скорее долихоцефальными). Это был разительный пример появления новых голов в Новом Свете.

Исследование Боаса нанесло краниометрии почти смертельный удар. За последние девяносто лет его цитировали несчетное число раз – не в последнюю очередь покойный Стивен Джей Гульд – в качестве доказательства "пластичности" формы черепа, а следовательно, ее обусловленности негенетическими различиями.[309] Боас, однако, оказался неправ. Его данные были недавно заново проанализированы с использованием современных статистических методов. Черепа детей, родившихся в Америке, на самом деле отличаются от черепов их родителей, но отличия эти противоречивы и не носят характер закономерности. Действительно, выбери Боас для сравнения детей шотландских или венгерских эмигрантов вместо сицилийцев и восточноевропейских евреев, он смог бы показать, что под влиянием американских условий черепа по форме удаляются друг от друга, а не сближаются. Но ошибка Боаса коренилась в чем-то более глубоком. Повторный анализ его данных показал также, что изменения формы черепа у детей, родившихся в Америке, вне зависимости от направленности этих изменений, были ничтожно малы по сравнению с теми различиями, которые сохранялись и были обусловлены их предками, семейной принадлежностью, или – для лаконичности – генами.[310] Действительно, если оставить в стороне европейских мигрантов, это едва ли покажется странным. Эксперты в области судебно-медицинской антропологии в Соединенных Штатах и Англии вполне в состоянии распознать, принадлежит ли данный череп, возможно свидетельствующий о каком-то преступлении, человеку африканского или европейского происхождения. То, что они могут это сделать после десятилетий или даже столетий сосуществования народов, не говоря уж о наличии значительной доли примеси, означает, что наши различия сохраняются, как часто говорят, не только на уровне кожи, но и на уровне черепа, а возможно, и того, что в нем содержится.

Итак, генетические различия существуют между самыми разными людьми. Должны ли мы попытаться выяснить их природу? Многие ученые полагают, что нет. Некоторые считают достаточным просто заявить, что физическое разнообразие, существующее между человеческими популяциями, их "не интересует" и недостойно изучения. Другие признают, что такие исследования интересны, но проводить их не рекомендуется, поскольку даже размышления на эту тему могут породить вспышки социальной несправедливости. Они страшатся возрождения не расовой, а расистской науки.

Со своей стороны я был бы счастлив узнать о генах, отвечающих за разнообразие человечества и определяющих различия между людьми – будь то мужчины и женщины, живущие в одной и той же деревне, или индивиды, никогда не покидавшие своих родных континентов. В некоторой степени мною движет простая любовь к познанию. Это чувство возникает тогда, когда я смотрю на картину Данте Габриеля Россетти "Ла Гирландата", понимая, что у его модели Алексы Уайлдинг было две мутации утраты функций гена MC1R, которые и сделали ее обладательницей роскошных рыжих волос. Радость познания отчасти всегда сопровождает любые занятия наукой, но к этому следует прибавить некое особое удовольствие, которое возникает тогда, когда удается понять причину явления ранее знакомого, хотя и абсолютно загадочного.

Точка зрения, что человеческая изменчивость не представляет интереса для науки, кажется мне излишне высокомерной. В конце концов, игнорируя человеческое разнообразие, популяционные генетики десятилетиями усиленно растрачивают свою энергию (запасы которой кажутся неисчерпаемыми) на изучение разновидностей окраски раковин у садовых улиток или числа щетинок на спинках плодовых мушек – задач, которые в интеллектуальном отношении весьма близки к тем, которые демонстрируются изменчивостью человека.

Утверждение, что генетика человека морально опасна, выглядит более серьезным. Зная историю науки о расах, конечно, можно понять причины возникновения такого мнения. Тем не менее оно совершенно неуместно. Разумные люди знают:  различия между представителями человеческого рода настолько невелики, что с их помощью нельзя причинить сколько-нибудь значимый ущерб идее социальной справедливости. "Человеческое равенство, – если позаимствовать крылатое выражение Стивена Джея Гульда, – есть условный факт человеческой истории". Справедливо, однако, другое: пока причины человеческой изменчивости остаются неизвестными – пока те самые 7 процентов генетического разнообразия, различающие людей из разных частей света, пребывают в забвении, всегда найдутся те, кто использует это незнание для пропаганды теорий с социально опасными последствиями. Несправедливость иногда может возникать из-за нового знания, но чаще, гораздо чаще, она просачивается сквозь щели нашего невежества.

Возможно, самый неотразимый довод в пользу того, что мы должны вновь обратить все наше внимание на изучение физического разнообразия человечества, заключен в угрозе его исчезновения. В Юго-Восточной Азии численность негритосов, этих загадочных, похожих на пигмеев людей, постоянно снижается. Они ведут образ жизни охотников-собирателей. В эпоху неолита они были вытеснены земледельцами и скотоводами, говорящими на австронезийских языках, и сохранились в основном на отдаленных островах. Теперь им угрожает современная цивилизация. На Малых Андаманских островах немногие сохранившиеся онге живут в резервациях. На Больших Андаманских островах несколько сот ярава выжили только потому, что защищались от любопытствующих луком и стрелами (за последние пятьдесят лет они убили или ранили более сотни человек). Теперь они выходят из лесных убежищ, привлеченные безделушками, которые предлагают им индийские власти. Есть опасность, что вскоре они станут жертвами туберкулеза, кори и культурного шока, как это случилось ранее с их предшественниками.

Таковы лишь недавние примеры печальных последствий австронезийской и европейской экспансий (не говоря о китайцах, банту или хараппах). В 1520 году Фернан Магеллан, приблизившись к проливу, который сегодня носит его имя, сообщил о существовании расы гигантов, которые живут в глубинах Огненной Земли. Он назвал их патагонцами,  по имени гиганта из испанского рыцарского романа. В дальнейшем путешественники разукрасили его рассказ новыми подробностями. К 1767 году эти гиганты, дикие и безжалостные, увеличились в размерах до 3 метров. Сегодня гиганты Огненной Земли полностью забыты и представляются фантастическими существами, наподобие плиниевских аримаспов. И все же патагонцы  реально существовали. Они именовали себя "селкнам" или "она", средняя длина тела взрослого мужчины в их группе равнялась 178 сантиметрам и была гигантской только на взгляд испанских моряков XVI столетия. Но если их рост не представляется особенно примечательным, то черепа, несомненно, обладают исключительными свойствами. Они крепкие, толстые и очень массивные, что отличает их от всех других человеческих черепов. Те же особенности были характерны и для остального скелета. Существует несколько фотографий селкнамов. На них изображены красивые и физически крепкие люди, одетые в накидки из шкур гуанако, на которых они охотились пешими, с луками величиной в человеческий рост. Владельцы аргентинских скотоводческих ранчо перебили всех селкнамов в результате массового геноцида; последний из патагонцев  умер где-то в 1920-х годах.[311]

 

 

Группа селкнамов, Огненная Земля, ок. 1914 г.

(Королевское географическое общество, Лондон)

 

Есть еще кое-что, о чем мне хотелось бы знать. Это феномен куда более общий, чем раса, и почти столь же противоречивый. Имя ему – красота. Красота есть то, что мы видим (или слышим, ощущаем на ощупь или по запаху) и что доставляет нам наслаждение. Как таковая она обладает, или, по крайней мере, кажется, что обладает, бесконечным разнообразием форм. В данном контексте меня интересует только физическая красота.

"Красота, – пишет философ Элейн Скерри, – ускоряет рождение детей: когда глаз видит нечто прекрасное, тело жаждет воспроизвести образец". Платон, подчеркивает она, высказывал ту же идею. В "Пире" Сократ рассказывает, как мантинеянка Диотима учила его искусству любви и как они рассуждали о природе любви и красоты. "Я объясню проще, – говорит Диотима. – Любовь вовсе не есть стремление к прекрасному, как то тебе, Сократ, кажется". – "Тогда что же она такое?" – "Стремление родить и произвести на свет в прекрасном". – "В самом деле?" – "Уверяю тебя, что это так".

Сам Дарвин не смог бы выразиться лучше. Большая часть его книги "Происхождение человека и половой отбор" посвящена изучению существования красоты, ее восприятия и назначения. "Самая утонченная красота, – пишет он, – служит всего лишь для привлечения внимания самки и ни для каких иных целей". Он размышлял о хвостовых перьях самцов аргусового фазана с геометрически расположенными на них пятнами. Но психология фазанов и жителей островов Фиджи, по его мнению, не слишком отличается. Для Дарвина любовь к красоте – одна из главных эволюционных сил, уступающая по значению только естественному отбору. Существа, поколение за поколением выбирающие красоту, привнесли в мир живой природы большую часть ее роскоши. Половой отбор снабдил мадагаскарского хамелеона рогами; рыбу меченосца – знаменитым мечом; райских птиц и павлиньих фазанов – хвостами. Он сформировал разнообразие человеческого вида.

Одна из поразительных вещей в дарвиновском описании красоты состоит в том, что, не ссылаясь на философов и художников, он сформулировал свой взгляд на основные принципы эстетики. Он хочет знать, является ли красота общим или частным понятием, часто или редко она встречается, есть ли в ней смысл. На все эти вопросы Дарвин дает абсолютно четкие ответы. Физическая красота, утверждает он, не универсальна, а скорее специфична. Разные народы в разных частях света имеют собственные представления о красоте. А еще она редка. Быть красивым значит быть в чем-то отличным от окружающих. Кроме того, она бессмысленна. Наш мозг, по тем или иным причинам, воспринимает некоторые вещи как красивые независимо от других качеств, которые могут быть им свойственны. Красота ничего не значит. Она существует сама по себе.

Все суждения Дарвина о красоте отличались, как это вообще было ему свойственно, непринужденной оригинальностью. В "Происхождении человека", например, не содержится никаких намеков на классический идеал красоты – тот самый, который начиная от архаических куросов и до речей Антиноя в течение нескольких столетий воспроизводился по всему Средиземноморью, как будто бы в основе всех этих представлений лежала определенная формула. И такая формула действительно существовала. В эпоху Возрождения это привело к созданию теории о том, что в основе красоты человеческого тела лежит божественная пропорция. В XVIII веке эта теория превратилась в стандарт, с помощью которого надлежало оценивать все человечество. Именно этот идеал заставлял Винкельмана утверждать, что древние греки были самыми прекрасными из всех людей (хотя современных неаполитанцев он также считал весьма привлекательными); Кампера – расположить голову греческой статуи в самом конце варьирующего ряда лицевых углов; Бюффона – поместить "зону красоты" между 20 и 35° северной широты и включить в нее все народы, живущие от Ганга до Марокко: персов, турок, черкесов, греков и европейцев. Этот же идеал побудил Бугенвиля по приезде на остров Таити в 1768 году восхвалять его жителей словами классической идиллии в стиле пасторалей Ватто. Дарвину удалось избежать всего этого. Он не говорит нам, что сам думает о красоте, а пытается узнать, что думают о ней другие люди. Он коллекционирует рассказы путешественников. Американские индейцы, как ему сообщали, считают, что женская красота включает в себя широкое плоское лицо, небольшие глаза, выступающие скулы, низкий лоб, широкий подбородок, крючковатый нос и свисающие до пояса груди. Маньчжуры отдают предпочтение женщинам с огромными ушами. В Кохинхине[312] у красоток круглые головы; в Сиаме – ноздри развернуты в разные стороны; готтентоты любят женщин с такой крайней формой стеатопигии, что они, если сядут, сами не смогут подняться.

Дарвин сомневался в качестве таких данных и был в этом абсолютно прав. Но в целом он вполне убежден в том, что разные народы воспринимают красоту по-разному. Его точка зрения весьма притягательна. "Per motto variare la nature e bella" – "Красота природы лежит в ее большом разнообразии" – это мог бы сказать Дарвин или Бенеттон, хотя в действительности крылатая фраза принадлежит Елизавете I. В самом деле, стоит взглянуть на бурлящий мир моды – и ни у кого не останется сомнения, что любовь к красоте зачастую принимает особую форму любви к редким и бесполезным вещам. Среди специалистов, занимающихся изучением красоты, – а научный подход к красоте становится все более модным, – взгляды Дарвина часто воспринимаются как довольно странные. В наши дни большинство исследований на эту тему начинается с того, что стандарты красоты универсальны, что присутствие красоты весьма распространено и что красота вовсе не бессмысленна, а, напротив, способна о многом поведать.

Универсальность стандартов красоты настолько же очевидна, как и их специфичность. Видимое противоречие легко устранимо, если только признать, что есть такие особенности, в отношении которых вкусы расходятся, и другие, которые всем нравятся. Рост волос (на голове, лице или теле), пигментация (глаз, волос и кожи), возможно, также форма тела (соотношение обхвата бедер и талии) по-разному воспринимаются отдельными людьми, в разных регионах и в разные эпохи. Но в случае относительной моложавости, по крайней мере при оценке женщин мужчинами, вкусы сходятся. Так же, как, по-видимому, и относительно определенного типа лиц. Усредненные лица, как кажется, повсеместно считаются более привлекательными, чем большинство, но не все, резко отличных от них вариантов. Симметрия оказывается предпочтительней асимметрии. Существует обширная литература, посвященная поискам того, кто что считает красивым и когда. Результаты этих исследований в большинстве своем очевидны. В конце концов, если коренного жителя Папуа – Новой Гвинеи привести в Лондонскую национальную галерею и предложить ему на выбор в качестве партнерши Венеру Боттичелли (с картины "Марс и Венера") или "Гротескную старуху" с картины Массейса, он, вероятно, останется индифферентным к обеим, но можно не сомневаться, какую из них предпочтет.

Смысл красоты более противоречив. Здесь я хочу подчеркнуть всего лишь одну мысль: красота говорит нам о физиологическом состоянии организма и является, по сути, сертификатом здоровья. В самой простой форме справедливость этого утверждения вполне очевидна. Чистая кожа, ясные глаза, белые зубы – это одновременно проявления красоты и здоровья. Не случайно бразильские мужчины, приметив красивую кариоку[313], восхищенно вздохнут: "Que saude!" – "Какое здоровье!" Менее очевидно, однако, другое: связаны ли со здоровьем определенные пропорции лица и их симметричность. Исследования с использованием полученных на компьютере изображений свидетельствуют: мы воспринимаем красивые лица как здоровые. Но попытки установить связь между красотой и здоровьем конкретных людей дают низкие и неустойчивые коэффициенты корреляции.

Возможно, так происходит оттого, что красота больше не является тем, чем была. На протяжении всей человеческой истории плохое здоровье было по большей части вызвано питанием и патогенными организмами, а именно недостатком первого и избытком вторых. Красота могла служить индикатором либо благоприятных условий среды, либо способности противостоять различным напастям. Доказать, что это в значительной степени правда, помогли бы данные о снижении изменчивости красоты хотя бы в развитых странах при увеличении ее средних значений. Зоб и кретинизм все еще поражают людей на обширных территориях земного шара, но они больше не встречаются у швейцарцев. Безобразные следы оспы исчезли повсюду. Даже в Англии зубы у большинства людей сохраняются теперь вплоть до кончины. Интересно было бы узнать, как болезни, поражающие множество детей на планете, – такие как филяриоз, малярия, сонная болезнь, – не говоря уж о различных формах дефицита питания, отражаются на симметрии и пропорциях лиц взрослых людей, сумевших пережить все эти невзгоды и недуги. Несомненно, что благосостояние также дорого обходится красоте – она платит за него ожирением, больными зубами и стрессом. Но при благоприятном соотношении тех и других воздействий – а так оно и должно быть – в любой аудитории американского или европейского колледжа содержится такой избыток красоты, которого в человеческой истории прежде никогда не существовало.

Это может показаться невероятным, но лишь потому, что мы мало знаем об успехах красоты. Красота подобна богатству. Со временем она увеличивается, но распределение ее остается неравномерным. Сколько бы у нас ее ни было, всегда кажется, что у кого-то ее еще больше. Отчасти это происходит из-за того, что красота как признак здоровья есть также признак богатства. Допустим, однако, что существует общество, богатое и эгалитаристское, все члены которого обладают одинаковым здоровьем. Примерно к такому общественному устройству приближаются Нидерланды (а Великобритании и Соединенным Штатам до него еще ох как далеко). В таком обществе по одному внешнему виду ребенка нельзя будет судить о его социально-экономическом положении. Но будут ли при этом все одинаково красивы? Исчезнут ли различия в физической красоте? Думаю, что нет. Каким бы красивым ни казался себе средний голландец, некоторые из соотечественников все же будут красивее его. Я подозреваю, что красота содержит некую остаточную дисперсию, которая не исчезнет даже после выравнивания условий воспитания. Остаток этот определяется нашими генами.[314]

Последствия плохого питания в детстве и воздействия патогенов могут и не отразиться на лицах, но груз мутаций на них наверняка будет заметен. Когда медицинские генетики пытаются диагностировать симптомы заболевания, имеющиеся у их пациентов, они первым делом смотрят на лица. Они знатоки в распознавании таких тонкостей, которые часто служат единственным внешним проявлением более глубоких нарушений генетического порядка: плоский фильтр, низко посаженные уши, задранный кверху нос, узко или широко расставленные глаза. Многие, если не большинство, из тех расстройств, которые обсуждались в этой книге, – от ахондроплазии до пикнодизостоза – можно отследить по лицам пациентов.[315]

Получается, что наши лица очень подвержены мутациям. Или, может быть, мы просто очень хорошо умеем различать на них эффекты мутаций. Так или иначе, похоже, что последствия мутаций запечатлены на всех наших лицах, а не только у тех, кто страдает определенными клиническими заболеваниями. В начале этой книги я писал, что каждый только что зачатый зародыш уже имеет, по прикидкам специалистов, в среднем около 300 мутаций, которые создают угрозу его здоровью. Кажется просто невероятным, что мы как биологический вид настолько неуспешны. Однако некоторое количество мутаций элиминируется отбором еще на стадии внутриутробной жизни. Пятнадцати процентам женщин, которые знают о своей беременности, угрожает выкидыш. Те, кто еще даже не подозревает о зачатии, теряют гораздо больше эмбрионов. Более 70 процентов самопроизвольно абортированных зародышей отличаются тяжелыми хромосомными аномалиями; весьма вероятно также, что многие из них характеризуются мутациями определенных генов. Сейчас мало кто сомневается, что выкидыши – тот эволюционный механизм, который позволяет материнскому организму отслеживать и освобождаться от генетически неполноценного потомства.[316]

Мутации – это игра случая, в которую играем все мы – и все проигрываем. Причем некоторые из нас проигрывают больше, чем другие. Простые вычисления помогут нам представить, как выглядит распределение этих проигрышей. Если предположить, что из 300 мутаций, в среднем отягощающих любой только что зачатый зародыш, 5 элиминируются из популяции в каждом поколении за счет гибели (выкидыши, младенческая и детская смертность), тогда в среднем на взрослого человека приходится 295 вредных мутаций. Наименее отягощенные ими люди, составляющие в популяции один процент, будут иметь около 250 мутаций, а наиболее отягощенная часть – 342 мутации. Где-нибудь в мире живет человек с наименьшим количеством мутаций, что составляет примерно 191.[317]

Эти расчеты подтверждают интуитивное представление о том, что ни один из нас не выходит из генетического казино без потерь. Но все это не более чем предположения, хотя и основанные на научных фактах. Они также не принимают во внимание относительную цену каждой мутации. Они эквивалентны подсчету проигрыша по числу фишек, которые возвращены в игорный дом, без учета их стоимости. Вероятнее всего, цена большинства мутаций невелика. Они доставляют нам мелкие неприятности наподобие болей в спине и плохого зрения. Я подозреваю, что они также снабжают нас неровными зубами, бесформенным носом и асимметрично расположенными ушами. Если это так, тогда истинный смысл красоты заключается в относительном отсутствии генетических ошибок.

Признаюсь, что у этой идеи мало доказательств, особенно когда речь идет о людях. Эволюционные биологи давно высказывают предположения, что павлиний хвост и рев благородного оленя служат сигналами генетической добротности. Они собрали много данных в поддержку этой теории, в большинстве своем малодоказательных. Объяснение красоты в контексте мутационной нагрузки совпадает, однако, с нашими интуитивными представлениями или предрассудками относительно распределения красоты. Если вредоносные мутации лишают нас красоты, тогда они должны действовать особенно эффективно в случае браков, заключаемых между родственниками. Большая часть новых мутаций, по крайней мере в какой-то степени, рецессивны, и инбридинг должен усиливать их отрицательное воздействие, поскольку они переходят в гомозиготное состояние. За близкородственные браки, несомненно, приходится платить дорогую цену: у детей кузин и кузенов врожденные дефекты встречаются на 2-4 процента чаще, чем у потомков неродственных индивидов. Хорошо бы выяснить, будут ли дети близких родственников считаться менее красивыми по сравнению с их сверстниками, родившимися у не состоящих в родстве индивидов. Подходящим местом для таких исследований мог бы стать Пакистан, где до 60 процентов браков заключается между двоюродными братьями и сестрами. С другой стороны, люди смешанного происхождения, такие, например, как бразильцы, должны демонстрировать эстетические преимущества подавления своих рецессивных мутаций: "Que saude!" – "Какое здоровье!"

Что же делает физическую красоту столь замечательной? Что позволяет ей захватывать нас врасплох, не дает равнодушно относиться к ней, невзирая на всю нашу пресыщенность рекламными и гламурными образами, которые экспроприируют красоту и заставляют нас усомниться в ее силе? Если ответ, который я пытался вкратце обрисовать здесь, содержит некую толику правды, тогда каждый образ прекрасного лица или совершенной по форме ножки воплощает собой не просто то, чем он на самом деле является, а скорее то, чем он не является. Он сигнализирует об отсутствующих несовершенствах: о тех механических ошибках, которые подстерегают нас в материнской утробе, в детстве, в зрелости и старости и которые столь широко распространены, что стоит нам увидеть кого-то, кто как будто бы избежал их, хотя бы только внешне, как мы замираем в изумлении и восторге. Красота, говорит Стендаль, есть лишь обещание счастья. Возможно. Но она есть также и память о несчастьях.

 

Благодарности

 

Работая над этой книгой,я задолжал многим людям. Мой агент Катинка Мэтсон из Brockman Inc.  впервые поняла, чем могут стать "Мутанты". Я благодарен ей, так же как и Карен Мерфи из издательства Viking Penguin USA , Мартену Карбо из Contact,  Нидерланды, и более всего – Майклу Фишвику из HarperCollins UK , чья вера в окончательное воплощение книги была непоколебима, хотя и подвергалась испытаниям. Роберт Лейси, также из HarperCollins , был замечательным редактором, мой голландский переводчик Роберт Верной – проницательным критиком. Некоторые друзья и коллеги сделали свои замечания по поводу тех или иных частей книги, среди них: Остин Берт, Арнольд Хемакерс, Барбара ван Эейзерен, Мари-Франс Леруа, Ян-Рулов Остра, Корин Перне и Джонатан Свайр. Оливия Юдсен, Клер Исак, Дженнифер Рон и Альберто Саес также прочли книгу и сделали ряд полезных замечаний. Я перед ними в неоплатном долгу.

Многие из моих друзей и коллег отвечали на мои конкретные вопросы. Среди них: Элизабет Аллен, Алан Эшворт, Питер Бейтон, Цзинь Цзян, Франсуа Деланж, Франк Дикоттер, Сол Дубои, Адемар Фрер-Масиас, Фритон Галис, Джил Хелмс, Кристиан Хертель, Аннемари Хеумакерс, Майкл Хохберг, Беатрис Хауэрд, Грейс Иоанниду, Мартин Кемп, Ханнелора Кишкевиц, Дебора Позел, Лизбет Раузинг, Раймунд Рос и Джон Уилмот. Ян-Рулоф Остра в Амстердаме, Седрик Кремьер и Жан-Луи Фишер в Париже с особой щедростью делились со мной своими знаниями по тератологии и ее истории. Вероник Дассен из Фрибурга рассказала мне о тератологии в Древнем мире; Марта Лар и Роберт Фоли из Кембриджа показали мне замечательную коллекцию черепов; Иегуда Корен и Элиат Негев из Иерусалима рассказали мне о судьбе семьи Овиц в Третьем рейхе. Я не знаю, как отблагодарить их за полученные от них знания. Мои ученицы Энн Ригби и Сара Ахмед рассказали мне о таких вещах, которые просто необходимо было включить в книгу; Кэролайн Ричардсон и Айрин Майер разыскивали и переводили тексты. Я не смог бы дать иллюстрации к книге, если бы не помощь Мириам Гутьерес-Перес из Wellcome Library for the History of Medicine,  Лондон, а также Лоры Линдгрен и Гретхен Ворден из музея Мюттера в Филадельфии.

Но в самом неоплатном долгу я перед теми, кто меня окружает: перед моими коллегами по Imperial College , перед коллегами по лаборатории, которых я, к сожалению, не назвал; перед моими друзьями Остином Бертом, Джимом Исаком, Оливией Юдсон, Гиоргосом Кокорисом, Вассо Купофану, Михаэлисом и Катериной Кутруманидис, Александрой Мелиаду, Дженни Рон, Джонатаном Свайром, Лисбет Веррейдт; перед членами моей семьи – Мари-Франс, Гарри, Ирацемой, Джозефом, в особенности перед родителями – Антуаном и Иоханной. Но превыше всего я благодарен Клер Исак, которая поддерживала меня на протяжении всего периода написания этой книги. Ей я с любовью посвящаю свой труд.

 

 


Дата добавления: 2018-08-06; просмотров: 309; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!