Цитоплазматическая наследственность. Митохондриальные болезни.



Некоторые признаки (окраска плодов, цветков и листьев, высокая активность клеточного дыхания и др.) могут наследоваться без участия ядерного аппарата. Такое явление возможно благодаря тому, что некоторые клеточные структуры имеют свою автономную кольцевую молекулу ДНК и способны делиться сравнительно автономно от клетки. В эукариотических клетках нехромосомная ДНК содержится в хлоропластах и митохондриях. Молекулы ДНК этих органелл несут информацию о собственных белках, а также об иРНК и тРНК, участвующих в их синтезе. Передача генетической информации через цитоплазму получила название цитоплазматической (внеядерной, нехромосомной) наследственности

 Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениям структуры, функций митохондрий, тканевого дыхания. Они передаются только по женской линии к детям обоих полов, так как сперматозоиды передают зиготе половину ядерного генома, а яйцеклетка поставляет и вторую половину генома, и митохондрии.

 

Законы Г.Менделя для моногибридного скрещивания и их цитологическое обоснование. Условия выполнения.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания «чистых линий», различающихся по одному признаку, будет проявлять признак одного из родителя.

Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения (гетерозиготных особей) между собой в потомстве происходит расщепление признаков по фенотипу 3:1 и генотипу 1:2:1.

Условие выполнения законов Менделя при моногибридном скрещивании: аллельные гены должны взаимодействовать по принципу полного доминирования (при неполном доминировании у гетерозигот наблюдается промежуточное проявление признака, вследствие чего расщепление по фенотипу и генотипу совпадает 3:1).

Законы Г.Менделя для дигибридного скрещивания и их цитологическое обоснование. Условия выполнения.

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что при дигибридном скрещивании во втором поколении появляются организмы с новыми сочетаниями признаков, отличных от родительских, т.е. выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые).

Цитологические основы дигибридного скрещивания:

Условия выполнения законов Менделя при дигибридном скрещивании:

-гены,отвечающие заразные признаки находятся в разных (негомологичных) хромосомах-недолжно быть взаимодействия неаллельных генов

При образовании гамет из каждой пары хромосом и находящихся в них аллельных генов в гамету попадает только один ген из пары, причём в результате случайного расхождения хромосом при мейозе ген А может попасть в одну гамету с геном В или с генами b, а; ген а может объединиться с геном В или с геном b.

Методы Г.Менделя и их принципы.

Гибридологический метод - Анализ закономерностей наследования отдельных свойств и признаков организмов при половом размножении, а также изменчивости генов и их комбинаторики. Метод разработан Г.Менделем.

Принципы гибридологического метода:

1) использование в качестве исходных родительских форм гомозиготных по анализируемым признакам особей (т.е. чистые линии);

2) учет при скрещивании не всего многообразия признаков, а лишь одной или нескольких пар альтернативных вариантов признаков;

3) индивидуальный анализ потомства от каждой особи;

4) количественный учет проявлений изучаемых признаков у всех особей.

 

Наследование групп крови (АВ0 – система) и резус-фактора у человека.

Система АВ0. Группы крови системы АВ0 («а», «б», «ноль») контролируются одним аутосомным геном или ABO, расположенным в длинном плече хромосомы 9. В этом гене идентифицировано 3 аллеля IA, IB и I0. Аллели IA и IB кодоминантны по отношению друг к другу, и оба они доминантны по отношению к аллелю I0. Таким образом, при сочетании различных аллелей могут образовываться 4 группы крови:

 0 или I при генотипе I0I0, A или II при генотипах IAIA и IAI0, B или III при генотипах IBIB и IBI0 и AB или IV при генотипе IAIB в соотношении 1:3:3:2

При самой редкой группе крови 0(I), которая в популяции встречается с частотой 11% (1:9), в сыворотке крови вырабатываются антитела против антигенов А иВ. Если человеку с группой крови 0(I) добавить кровь любой другой группы произойдет агглютинация (слипание) эритроцитов и разовьется гемолитический шок. В тоже время кровь группы 0(I) не содержит эритроцитарных антигенов, и ее можно переливать любымреципиентам вне зависимости от их группы крови. Поэтому люди с группой крови 0(I) являются «универсальными донорами». При четвертой группе крови AB(IV) антитела против эритроцитарных антигенов в сыворотке крови не вырабатываются. Этим людям можно переливать кровь любой группы, таким образом, они являются «универсальными реципиентами».

Знание групповой принадлежности по Rh-системе имеет огромное значение для предотвращения резус-конфликта между матерью и плодом, который может возникнуть во время беременности. Если у резус-отрицательной женщины муж имеет резус-положительную принадлежность, то с высокой вероятностью ребенок окажется резус-положительный, и тогда может возникнуть резус-конфликт между плодом и матерью.

Для профилактики резус-конфликта и гемолитической болезни у плода женщине с отрицательной резус-принадлежностью при любом внутриматочном вмешательстве во время первой беременности (медицинский аборт, самопроизвольный выкидыш с последующим выскабливанием, роды) показано введение анти-Д-иммуноглобулина. Этот препарат снижает резус-сенсибилизацию беременной, то есть её чувствительность к резус-фактору и соответственно формированию резусных антител.


Дата добавления: 2018-08-06; просмотров: 609; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!