Параллельная работа генераторов постоянного тока.



В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого, параллельного или смешанного возбуждения.

При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Включение на параллельную работу:

Схема параллельной работы двух генераторов параллельного возбуждения показана на рисунке 1. Пусть генератор 1 уже работает на сборные шины и необходимо подключить к этим шинам генератор 2.

Тогда надо соблюсти следующие условия: 1) полярность генератора 2 должна быть такой же, как и генератора 1 или шин Ш, т. е. положительный (+) и отрицательный (–) зажимы генератора 2должны с помощью рубильника или другого выключателя Р2 соединиться с одноименными зажимами сборных шин; 2) электродвижущая сила (э. д. с.) генератора 2 должна равняться напряжению на шинах. При соблюдении этих условий при подключении генератора 2 к шинам с помощью рубильника не возникает никакого толчка тока и этот генератор после его включения будет работать без нагрузки, на холостом ходу.

 
Рисунок 1. Схема параллельной работы генераторов параллельного возбуждения

Для выполнения и проверки этих условий включения поступают следующим образом. Генератор 2 приводят во вращение с номинальной скоростью и возбуждают до нужного напряжения. Его напряжение измеряют с помощью вольтметра V1 и вольтметрового переключателя П, для чего последний ставят в положение 2 – 2. Напряжение шин измеряют тем же вольтметром в положении переключателя Ш – Ш. Чтобы одновременно проверить соответствие полярностей, вольтметр V1 должен быть магнитоэлектрического типа. Тогда при включении вольтметра по схеме, изображенной на рисунке 1, отклонения его стрелки при правильной полярности генератора 2 и шин будут происходить в одну и ту же сторону. Если полярность генератора 2 неправильна, то необходимо переключить два конца от его якоря. Нужное значение напряжения генератора достигается путем регулирования его тока возбуждения iв2 с помощью реостата.

Возможен также другой способ контроля правильности условий включения – с помощью вольтметра V2, подключенного к зажимам одного полюса рубильника Р2. Если другой полюс (нож) рубильника включить, то при равенстве напряжений и правильной полярности генераторов показание вольтметра V2 будет равно нулю.

При включении генератора 2 с неправильной полярностью в замкнутой цепи, образованной якорями обоих генераторов (рисунок 1) и шинами, э. д. с. обоих генераторов будут складываться. Так как сопротивление этой цепи мало, то возникают условия, эквивалентные короткому замыканию, что приводит к аварии. При правильной полярности, но неравных напряжениях генераторов в указанной цепи возникает уравнительный ток

значение которого также может оказаться большим.

При включении нагрузки уравнительный ток вызывает увеличение тока одного генератора и уменьшение тока другого, в результате чего генераторы нагружаются неодинаково.

 

38.​ Параллельная работа генераторов смешанного возбуждения.

В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого, параллельного или смешанного возбуждения.

При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Параллельная работа генераторов смешанного возбуждения:

Упрощенная схема параллельной работы двух генераторов смешанного возбуждения с согласным включением последовательных обмоток изображена на рисунке 3.

Рисунок 3. Схема параллельной работы генераторов смешанного возбуждения с согласным включением последовательных обмоток

Если показанный на рисунке 3 уравнительный провод аб отсутствует, то устойчивая параллельная работа невозможна. Действительно, пусть при отсутствии этого провода ток I1 первого генератора по какой-либо случайной причине (например, вследствие увеличения скорости вращения генератора) несколько увеличился. Тогда действие последовательной обмотки возбуждения этого генератора усилится, его э. д. с. Eа1 возрастет, что вызовет дальнейшее увеличение I1, и т. д. Одновременно ток I2 и э. д. с. Eа2 второго генератора будут беспрерывно уменьшатся. В результате возможна значительная перегрузка генератора 1, а генератор 2 разгрузится и даже может перейти в двигательный режим.При наличии уравнительного провода аб параллельная работа будет протекать нормально, так как случайное приращение тока якоря одного генератора распределится между последовательными обмотками возбуждения обоих генераторов и вызовет увеличение э. д. с. обоих генераторов.

Можно также перекрестить последовательные обмотки возбуждения обоих генераторов: обмотку генератора 1 включить последовательно в цепь якоря генератора 2 и наоборот. Параллельная работа генераторов смешанного возбуждения со встречным включением последовательных обмоток происходит без подобных затруднений.

 

39.​ Общие сведения о двигателях постоянного тока (ДПТ).

Двигатели постоянного тока находят широкое применение в промышленных, транспортных, крановых и других установках, где требуется широкое плавное регулирование частоты вращения. Одна и та же электрическая машина может работать как в режиме генератора, так и в режиме двигателя. Это свойство электрических машин называют обратимостью.

Предположим, что к двигателю подведено напряжение UСЕТИ = const. При заданной на рисунке 16.1 полярности полюсов и направлении тока IЯ в якоре (обмотка якоря показана только одним проводником) на валу двигателя создается вращающий электромагнитный момент М, направленный против вращения часовой стрелки. Под действием этого момента двигатель вращается в направлении момента с постоянной частотой п.

 

Рисунок 16.1 – Направление момента и противо-э.д.с. обмотки якоря двигателя

 

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

В двигателях независимого возбуждения токи якоря Iа и нагрузки I равны: I = Iа, в двигателях параллельного и смешанного возбуждения I = Iа + iв и в двигателях последовательного возбуждения I = Iа = Iв.

С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.

Рисунок 1. Энергетическая диаграмма двигателя параллельного возбуждения

Энергетическая диаграмма

Энергетическая диаграмма двигателя параллельного возбуждения изображена на рисунке 1. Первичная мощность P1 является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждения pв и электрические потери pэла = Iа² × Rа в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря Pэм = Eа × Iа, которая превращается в механическую мощность Pмх. Потери магнитные pмг, добавочные pд, и механические pмх покрываются за счет механической мощности, а остальная часть этой мощности представляет собой полезную механическую мощность P2 на валу.

Уравнение вращающих моментов

Электромагнитный момент двигателя: Mэм = Pэм / Ω,

который является движущим и действует в сторону вращения, расходуется на уравновешивание тормозящих моментов: 1) момента M0, соответствующего потерям pмг, pд и pмх, покрываемым за счет механической мощности 2) Mв – момента нагрузки на валу, создаваемого рабочей машиной или механизмом; 3) Mдин – динамического момента

Таким образом,

Mэм = M0 + Mв + Mдин  

или

При установившемся режиме работы, когда n = const и поэтому Mдин = 0,

:.U = Eа + Rа × Iа.  

 

Рабочие характеристики ДПТ.

 Рабочими харистиками ДПТ называют зависимости КПД η, тока Iя, момента M, частоты n, подводимой мощности P1 от полезной мощности P2.

Важнейшим энергетическим показателем машины постоянного тока является КПД η = P2/P1. КПД зависит от величины потерь мощности ΔP = P1 – P2. Потери мощности слагаются из следующих основных видов: 1) потери в обмотке якоря ΔP = RяIя2; 2) потери в стали ΔPс, вызываемые вихревыми токами и перемагничиванием якоря при его вращении; 3) механические потери ΔPм от трения в подшипниках, щеток о коллектор, якоря о воздух; 4) потери в обмотке возбуждения ΔPв = RвIв2. КПД машин постоянного тока растет с увеличением номинальной мощности.

 

41.Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением

Необходимым условием процесса преобразования энергии является протекание переменных токов хотя бы по части обмоток машины. В двигателе постоянного тока это условие выполняется работой коллектора, коммутирующего постоянный ток, поступающий от источника питания, с частотой ωэл, равный угловой скорости вращения ротора. Таким образом, с точки зрения протекания внутренних процессов двигатель постоянного тока является машиной переменного тока, а, следовательно, его моделью является обобщенная электрическая машина (рис. 6.1а).

 

a) б)

 

Рис.6.1. Двухфазная модель двигателя постоянного тока c независимым возбуждением в осях , , d, q (а) и в осях ,

Обмотка статора по оси β включена на постоянное напряжение Uв. Обмотки ротора 2 d и 2qполучают питание от преобразователя частоты ПЧ, осуществляющего коммутацию токов i2dи i2q в функции угла поворота φэл с частотой ωэл. Если коммутация осуществляется механическим коммутатором-коллектором, то мы имеем обобщенную электрическую модель двигателя постоянного тока. В случае применения в качестве ПЧ вентильного преобразователя частоты, мы имеем модель вентильного двигателя.

МДС статора неподвижна в пространстве; она создается током возбуждения iв= i, а ее направление соответствует направлению оси β. Соответственно и МДС ротора при его вращении со скоростью ω должна быть неподвижна относительно статора, что возможно лишь при условии вращения МДС ротора против его вращения со скоростью ω. Это условие выполняется, если обмотки ротора обтекаются токами, изменяющимися по законам:

 

 

; (6.1)

 

 

МДС ротора в этом случае неподвижна относительно статора, поэтому для математического описания динамических процессов преобразования энергии в двигателе постоянного тока целесообразно использовать формулы прямого преобразования координат обобщенной машины: α, β, d, q -› α, β (ωк=0). Для роторных переменных они имеют вид:

(6.2)

Подставив u=α, v=β, , получим:

(6.3)

(6.4)

Следовательно, в осях α, β действительным переменным токам обмотки ротора эквивалентна одна якорная обмотка, ось которой совпадает с осью α и которая обтекается постоянным током iя. В реальной машине по оси α расположены также обмотка дополнительных полюсов и компенсационная обмотка. Поэтому модель двигателя постоянного тока в осях α, β будет иметь вид (рис. 6.1б)

 


Дата добавления: 2018-06-01; просмотров: 872; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!