Малосигнальные параметры биполярного транзистора и эквивалентные схемы



 

При расчете транзисторных усилительных схем транзистор, как правило, заменяют его эквивалентной схемой, параметры которой получают путем линеаризации вольтамперных характеристик в заданной рабочей точке. Поскольку точную линеаризацию можно получить только в ограниченной области изменений напряжений и токов, то рассчитанные таким образом параметры называют малосигнальными. При определении параметров транзистора он рассматривается как некоторый четырехполюсник как это показано на рис. 3.10. При таком подходе не принципиально в каком включении находится транзистор. Различия в схеме включения отразятся на значениях самих параметров.

 

Рис. 3.10. Представление транзистора в виде четырехполюсника:                      а) включение с общим эмиттером, б) включение с общей базой

 

На входе четырехполюсника (рис. 3.10) действуют U1, I1 на выходе U2, I2. В зависимости от того что будет взято в качестве функций и что в качестве аргументов будут иметь место различные системы параметров.

R - параметры.

Предположим, что при измерениях задавали входной и выходной токи и измеряли входное и выходное напряжения, результирующие вольтамперные характеристики транзистора были записаны в виде:

U1 = f1(I1,I2), U2 = f2(I1,I2)                                        (3.12)

Полные дифференциалы входного и выходного напряжения запишутся в следующем виде:

                                       (3.13)

Соответствующие дифференциальные приращения будем рассматривать как сигналы, а производные как некоторые коэффициенты, имеющие размерность сопротивления, тогда уравнения (3.13) можно переписать в следующем виде:

                                                (3.14)

Рассмотрим физический смысл и способ их определения.

Для того, чтобы определить малосигнальные параметры необходимо задать режим транзистора по постоянному току, соответствующий его рабочей точке в усилительном каскаде (например т.А на рис. 3.9 ), т.е. установить UЭ(А), UК(А) и задав соответствующие значения IЭ(А), IК(А). Затем задавая переменные сигналы тока во входную и выходную цепи выполнить измерения соответствующих значений напряжений, которые позволят рассчитать малосигнальные параметры транзистора. Поскольку задаются токи, необходимо осуществлять режим генератора тока, т.е. входное или выходное сопротивление транзистора на частоте сигнала должно быть много меньше сопротивления генератора сигнала. Расчет параметров осуществляется по формулам, следующим из (3.14):

r11 = u1/i1 - входное сопротивление транзистора, измеренное при i2 = 0, т.е. в режиме холостого хода в выходной цепи;

r22 = u2/i2 - выходное сопротивление транзистора, измеренное при i1 = 0, т.е. в режиме холостого хода во входной цепи;

r12 = u1/i2 - сопротивление обратной связи, измеренное при i1 = 0, т.е. в режиме холостого хода во входной цепи;

r21 = u2/i1 - сопротивление прямой передачи сигнала, измеренное при i2 = 0, т.е. в режиме холостого хода в выходной цепи;

Все определенные параметры являются сопротивлениями (r-параметрами). Для r-параметров возможно составить эквивалентную схему. Усилительные свойства транзистора и свойства обратной связи характеризуются напряжениями r21i1 r12i2, которые на эквивалентной схеме можно отразить введя генераторы напряжения, сигнал которых будет зависеть от входного и выходного сигнала. Эквивалентная схема, соответствующая уравнениям (4_61) показана на рис. 3.11а.

 

Рис. 3.11. Схемы замещения биполярного транзистора: а) п - образная схема замещения, б) т - образная схема замещения транзистора во включении ОБ,    в) т - образная схема замещения транзистора во включении ОЭ

 

Схему показанную на рис. 3.11а можно преобразовать в эквивалентную ей т-образную схему замещения, пересчитав соответствующие сопротивления и введя генератор тока, характеризующий усилительные свойства транзистора. Параметры, входящие в эту схему замещения часто называют физическими, поскольку им можно придать определенный физический смысл. На рис. 60б показана т-образная схема замещения транзистора в ОБ на фоне структуры биполярного транзистора. Сравнение схемы со структурой показывает, что действительно возможно придать следующий физический смысл элементам схемы rэ - дифференциальное сопротивление эмиттерного перехода в заданной рабочей точке, rк- дифференциальное сопротивление коллекторного перехода в заданной рабочей точке, rб - дифференциальное сопротивление толщи базы создающее падение напряжения от базового тока и являющееся одной из причин обратной связи в транзисторе, α - коэффициент передачи тока в схеме с общей базой (K). Удобство физических параметров заключается в том, что они позволяют наглядно представить влияние конструктивно технологических параметров транзистора на его эксплуатационные характеристики. Так, например, уменьшение степени легирования базы или ее толщины должны приводить к росту rб и соответственно к увеличению обратной связи в транзисторе. На рис. 60в показана малосигнальная схема замещения транзистора с включением ОЭ, в этой схеме K = β =α/(1-α) и r*кЭ ≈ rкБ/ β.

К недостаткам физических параметров следует отнести то, что их нельзя непосредственно измерить и значения для них получают пересчетом из r - параметров. Для нахождения формул пересчета можно составить уравнения описывающие схему рис. 3.11а и схему рис. 3.11б (или рис. 3.11в) и приравнять коэффициенты при соответствующих токах.

Пример* : нахождение соответствия между r параметрами и физическими параметрами.

Составим уравнения описывающие схему 50б и аналогично тому как уравнения (4_61) описывают схему рис. 50а.

          (3.15)

Приравняем коэффициенты при токах в (3.14) и (3.15) и найдем связь между их параметрами:

     (3.16)

Аналогично можно установить связь между параметрами схемы рис. 3.11в и рис. 3.11а.

С точки зрения измерений к недостаткам r-параметров следует отнести то, что они требуют осуществления режима холостого хода по переменному сигналу в выходной цепи. Этот режим обычно осуществляется последовательным включением индуктивности, однако на высоких частотах трудно обеспечить высокое сопротивление индуктивности, которое бы было больше выходного сопротивления транзистора, в результате могут возникнуть значительные погрешности при определении параметров транзистора и соответственно при расчете использующих его каскадов.

G - параметры

Предположим, что при измерениях задавали входное и выходное напряжения и измеряли входной и выходной токи, после чего результирующие вольтамперные характеристики транзистора были записаны в виде:

I1 = f1(U 1, U 2), I2 = f2(U 1, U 2)                                        (3.17)

Полные дифференциалы входного и выходного напряжения запишутся в следующем виде:

                                       (3.18)

Перейдя к записи малых сигналов уравнение (4_65) преобразуем к виду:

                                             (3.19)

Задавая переменные сигналы напряжения во входную и выходную цепи возможно выполнить измерения соответствующих значений токов и рассчитать малосигнальные g-параметры транзистора, которые будут проводимостями. Поскольку при измерениях задаются напряжения, необходимо осуществлять режим генератора напряжения, т.е. сопротивление генератора на частоте сигнала должно быть много меньше входного или выходного сопротивления транзистора. Расчет параметров осуществляется по формулам, следующим из (3.14):

g11=i1/u1 - входная проводимость транзистора, измеренная в режиме u2 = 0 - короткого замыкания по переменному току в выходной цепи,

g22=i2/u2 - выходная проводимость транзистора, измеренная в режиме u1 = 0 - короткого замыкания по переменному току во входной цепи,

g21=i2/u1 - проводимость прямой передачи, измеренная в режиме u2 = 0 - короткого замыкания по переменному току в выходной цепи,

g12=i1/u2 - проводимость обратной связи, измеренная в режиме u1 = 0 - короткого замыкания по переменному току во входной цепи.

Схема замещения транзистора, соответствующая малосигнальным               g- параметрам приведена на рис. 3.12а.

R недостаткам g-параметров следует отнести то, что они требуют осуществления режима короткого замыкания по переменному сигналу во входной цепи. Этот режим обычно осуществляется параллельным включением со входом транзистора конденсатора, однако на высоких частотах трудно обеспечить низкое сопротивление конденсатора, которое бы было меньше входного сопротивления транзистора особенно, если он мощный.

 

 

Рис. 3.12. Схемы замещения биполярного транзистора соответствующие:              а) g - параметрам, б) h - параметрам

 

 

H - параметры

С точки зрения измерений и r и g параметры имеют существенные недостатки, затрудняющие их точное измерение. Поскольку входное сопротивление биполярного транзистора мало, а выходное велико при измерениях предпочтительно во входной цепи осуществлять по переменному току режим холостого хода (сопротивление измерительной цепи на заданной частоте выше входного сопротивления транзистора), а в выходного режим короткого замыкания (сопротивление измерительной цепи меньше выходного сопротивления транзистора).

Предположим, что при измерениях будут задаваться входной ток и выходное напряжение и измеряться входное напряжение и выходной ток, после чего результирующие вольтамперные характеристики транзистора будут записаны в виде:

U1 = f1(I 1, U 2), I2 = f2(I 1, U 2)                                        (3.20)

Полные дифференциалы входного напряжения и выходного тока запишутся в следующем виде:

                                       (3.21)

Перейдя к записи малых сигналов уравнение (3.18) преобразуем к виду:

                                             (3.22)

Задавая переменные сигналы тока во входную и напряжения в выходную цепи возможно выполнить измерения соответствующих значений напряжений во входной цепи и токов выходной, на основе которых возможно рассчитать малосигнальные h-параметры транзистора, которые будут как безразмерными, так с размерностью проводимости и сопротивления (поэтому эту систему называют системой смешанных параметров). Расчет параметров осуществляется по формулам, следующим из (3.22):

h11=u1/i1 - входное сопротивление транзистора, измеренное в режиме u2 = 0 - короткого замыкания по переменному току в выходной цепи,

h22=i2/u2 - выходная проводимость транзистора, измеренная в режиме i1 = 0 - холостой ход по переменному сигналу во входной цепи,

h21=i2/i1 - коэффициент передачи тока, измеренный в режиме u2 = 0 - короткого замыкания по переменному току в выходной цепи (для ОБ h21=α, для ОЭ h21=β),

h12=u1/u2 - коэффициент обратной связи по напряжению, измеренный в режиме   i1 = 0 - холостого хода по переменному току во входной цепи.

Схема замещения транзистора, соответствующая малосигнальным               h- параметрам приведена на рис. 61б.

К недостаткам h-параметров следует отнести то, что поскольку данная система является смешанной она неудобна для схемотехнических расчетов. В схемотехнических расчетах, могут использоваться r или g параметры, рассчитанные на основе h параметров.

Рассмотренные системы параметров могут использоваться как на низких, так и на высоких частотах. При этом соответствующие значения на высоких частотах становятся комплексными и r, g, h параметрам на высоких частотах будут соответствовать комплексные Z, Y, H параметры.

Лекция 13

 


Дата добавления: 2018-06-01; просмотров: 1421; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!