Сила. Плоская система сходящихся сил.



Ньютон русское обозначение: Н; международное: N — единица измерения силы

Системасходящихся сил — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке.

Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух (а не трёх, как в других статически определимых системах). Это обусловлено тем, что системы сил имеют равнодействующую, равную нулю, и её момент равен нулю относительно любой точки плоскости по теореме Вариньона, а не исходя из условий равновесия статики.

(На практике простейшим примером сходящейся системы сил являются силы, действующие на груз, лежащий на абсолютно гладком, горизонтальном столе. В такой системе сил имеется сила тяжести, и сила реакции опоры, действующие вдоль одной линии. Другим примером сходящейся системы сил являются силы, действующие в точке подвеса груза, висящего на двух тросах .)

Смятие. Контактные напряжения.

Если детали конструкции, передающие значительную сжимающую нагрузку, имеют небольшую площадь контакта, то может произойти смятие поверхностей деталей.
Смятие стараются предотвратить различными способами, например, подкладывая различные шайбы и подкладки под контактирующие детали.

Для простоты расчетов напряжений, возникающих при смятии, полагают, что по плоскости контакта возникают только нормальные напряжения, равномерно распределенные по площади контакта. Расчетное уравнение на смятие имеет вид:

σсм = F / Асм ≤ [σсм],

где: F – сжимающая сила, Асм – площадь контакта, [σсм] – допускаемое напряжение на смятие.

Если соприкасающиеся детали сделаны из разных материалов, то на смятие проверяют деталь из более мягкого материала.

При контакте двух деталей цилиндрической поверхности (например, заклепочное соединение) закон распределения напряжений смятия по поверхности контакта сложнее, чем по плоскости, поэтому при расчете на смятие цилиндрических отверстий в расчетную формулу подставляют не площадь боковой поверхности полуцилиндра, по которой происходит контакт, а значительно меньшую площадь диаметрального сечения отверстия (условная площадь смятия, (см. рис. 2), тогда:

Асм = d δ,

где d - диаметр цилиндра, δ - толщина соединяемой детали (высота цилиндра).

При различной толщине соединяемых деталей, в расчетную формулу подставляют меньшую толщину.

Допустимые напряжения на смятие для разных материалов определяются опытным путем, их значение можно найти в справочниках.
Так, для низкоуглеродистой стали допускаемое напряжение смятия принимается в пределах 100….120 МПа, для клепаных соединений: 240….320 МПа, для древесины: 2,4….11 МПа и т. д.

***

 


Контактные напряжения

Контактными называют напряжения и деформации, возникающие при сжатии тел криволинейной формы, причем первоначальный контакт может быть линейным (например, сжатие двух цилиндров с параллельными образующими), или точечным (например, сжатие двух шаров).

В результате деформации контактирующих тел начальный точечный или линейный контакт переходит в контакт по некоторой малой площадке. Решение вопросов о контактных напряжениях и деформациях впервые дано в работах немецкого физика Г. Герца (1857-1894 г. г.).

Для деталей, в поверхностных слоях которых возникают контактные напряжения (например, подшипники качения, фрикционные катки, зубчатые колеса и т. п. ), решающую роль играет прочность рабочих поверхностей – контактная прочность.

Рассмотрим случай контакта двух цилиндров с параллельными образующими (рис 3).
Определение контактных напряжений в этом случае производится по формуле Герца, выведенной в предположении, что материалы цилиндров подчиняются закону Гука.
Очевидно, что контактные напряжения по ширине площадки контакта неравномерны.

Максимальные напряжения σн определяются по формуле:

σн = √{qEпр / [2π(1 - ν2)ρпр]}, (здесь и далее √ - знак корня)

где:
q – нагрузка на единицу длины линии контакта;
Епр – приведенный модуль упругости, получаемый из соотношения 2/Епр = 1/Е1 + 1/Е2; (здесь 1/Е - некоторая характеристика податливости материала), откуда: Епр = 2 Е1Е2 / Е1 + Е2;
ν - коэффициент Пуассона;
ρпр – приведенный радиус кривизны цилиндров, определяемый из соотношения 1/ρпр = 1/R1 + 1/R2, (здесь 1/ρпр - кривизна поверхности), откуда:

ρпр = R1R2 / R1 + R2.

При ν = 0,3 формула Герца приобретает вид:

σн = 0,418 √(qEпр / ρпр).

Формула Герца широко применяется при расчетах на контактную прочность многих деталей машин и механизмов - зубчатых колес, подшипников качения и т. п.

Билет 4


Дата добавления: 2018-06-01; просмотров: 363; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!