Работа выхода. Свойства перехода и эффекты при контакте двух металлов.



Билет 15

Собственная и примесная проводимость в полупроводниках.

Собственная проводимость. У полупроводников и диэлектриков валентная зона полностью заполнена электронами и при T=0 K они не могут принять участие в проводимости. Принять участие в проводимости они смогут, если им сообщить энергию, превышающую энергию запрещенной зоны, и они перейдут в свободную зону. Свободная зона станет для них зоной проводимости (так её и называют). Это происходит при T>0 , когда в кристалле появляются фононы. Поглотив фонон или несколько фононов, электрон заполненной (валентной) зоны может получить энергию, достаточную для перехода в зону проводимости. Одновременно приходят в движение электроны верхних уровней валентной зоны, так как эти уровни частично освобождаются. Поэтому у полупроводников проводимость возникает при T ≠ 0 в результате перехода электронов с верхних уровней валентной зоны (потолка валентной зоны) на верхние уровни зоны проводимости (дно зоны проводимости). При этом в валентной зоне освобождается такое же число уровней. Освобожденные уровни ведут себя как положительно заряженные частицы с зарядом «+e ». Такие фиктивные квазичастицы (частицы, которые не могут быть обнаружены в свободном состоянии) – называют «дырками». Уровень Ферми, как показывает расчет, расположен в собственных полупроводниках и диэлектриках посередине запрещенной зоны и не связан с реальным электроном. К такому выводу можно прийти на основании следующих рассуждений. Примем за начало отсчета энергии энергетический уровень, соответствующий дну зоны проводимости. Тепловые колебания переводят электроны из валентной зоны в зону проводимости. Эти электроны переходят назад в валентную зону. Им на смену из валентной зоны приходят новые электроны. Отсюда в проводимости принимают участие как электроны, находящиеся на верхних уровнях валентной зоны, так и на нижних уровнях зоны проводимости. Энергия первых E1 = ;0 вторых E E 2 = −∆ . Тогда энергия, затрачиваемая на образование двух носителей, делится на два и средняя энергия электронов, принимающая участие в проводимости равна 2 ∆E − . Энергия не соответствует реальному уровню, занятому электроном и практически не зависит от температуры. Эту энергию называют уровнем Ферми.

Проводимость полупроводников и диэлектриков, обусловленную свободными электронами и дырками, образовавшимися в результате перехода электронов из валентной зоны в зону проводимости, называется собственной проводимостью. 2 Собственная проводимость полупроводников, пропорциональная числу носителей заряда, зависит от температуры по закону 2 σ σ0 . E kT e ∆ − = (1) Наиболее важными собственными полупроводниками являются кремний (Si→Z=14) и германий (Ge → Z=32). Электронные конфигурации и ширина запрещенной зоны: Si 2 2 6 2 2 −1 2 2 3 3 s s p s p (∆ = E 1,1 эВ), Ge- 2 2 6 2 6 10 2 2 1 2 2 3 3 3 4 4 s s p s p d s p (∆E = 75,0 эВ). Si и Ge имеют по 4 валентных электрона в s- и p-подоболочках. Связь с соседними атомами − ковалентная. Валентная зона при T=0 заполнена. Ширина запрещенной зоны небольшая.

Примесная проводимость возникает, когда в чистом полупроводнике некоторые атомы замещают другими атомами и связана с появлением энергетических уровней в запрещенной зоне. Примесь может быть как поставщиком электронов, так и образовывать центры прилипания. У Si и Ge 4 электрона образуют связь с соседними атомами. Заменим атом Si или Ge атомами примеси, обладающими пятью валентными электронами (фосфор, мышьяк, сурьма). Четыре образуют связь с соседними атомами Si или Ge, а пятый оказывается лишним и не может образовать ковалентную связь. Энергия 4-х электронов – та же, что у электронов атома германия и они располагаются в энергетическом спектре в валентной зоне. Пятый электрон слабо связан с атомным остатком P. Требуется небольшая энергия по сравнению с ∆E , чтобы перевести его в зону проводимости. В результате в запрещенной зоне возникает добавочный уровень, расположенный близко к свободной зоне (они расположены на расстоянии 0,05 эВ от дна зоны проводимости - донорные уровни). При T = 0 зона проводимости пуста. При нагревании в результате теплового заброса электронов в зону проводимости возникает электронная проводимость (проводимость n-типа). Полупроводники такого типа называются электронными (или полупроводниками n-типа). Энергия активации проводимости значительно меньше, чем для собственных полупроводников. Если примесь, напримерIn, B содержит три валентных электрона, то одна двойная связь не укомплектована. Эта связь может быть обеспечена переходом от атома Si или Ge к атому индия другого электрона, то есть возникает энергетический уровень, расположенный выше потолка валентной 3 зоны. Но при T = 0 такой переход невозможен, так как необходима дополнительная энергия. Поэтому при T = 0 валентные электроны Si или Ge остаются на своих местах, а примесные атомы In или B не укомплектованы. Но возникает принципиальная возможность для перехода электронов, получивших дополнительную энергию, на более высокий энергетический уровень. При T = 0 проводимости нет. При T > 0 электроны получают дополнительную энергию (0,05 эВ). При этом в валентной зоне возникает дырка. Естественно, возможен и обратный переход. Но пока электрон находится в атоме индия (атом индия превращается в отрицательный ион), его вакантное место будет занято другим валентным электроном, то есть в результате возникает дырка и дырочная проводимость. Такие полупроводники получили название дырочных полупроводников или полупроводников p-типа. Примеси, вводимые для захвата электронов из валентной зоны, назвали акцепторами, а энергетические уровни этих примесей – акцепторными уровнями (уровнями прилипания).

2.Движение электронов в магнитном поле. Эффект Холла.

1)Если заряженная частица в магнитном поле движется вдоль линий магнитной индукции, то угол α между векторами v и B

равен 0 или π.Тогда сила Лоренца равна нулю

F=QvB = =0

2)Если заряженная частица движется в магнитном поле со скоро-

стью , которая перпендикулярна вектору B,то

F=QvB = = QvB

3)Частица будет двигаться по окружности, радиус которой находится из условия

QvB= ,следовательно R= , а отношение - удельный заряд частицы

Период вращения частицы:T=

Ускорителями заряженных частиц называются устройства, которые под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц . Ускорители подразделяются на непрерывные и импульсные. По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные.

Эффект Холла –это возникновение в металле или полупроводнике с током плотностью , который помещен в магнитное поле , электрического поля в направлении, перпендикулярном и .

e = ,где -поперечная разность потенциалов; а-ширина пластинки

R - постоянная Холла, которая зависит от вещества.

3.Сколько атомов содержится в элементарной ячейке структуры алмаза?

Пространственная решетка — это схема, которая показывает расположение материальных частиц в пространстве. Пространственная решетка фактически состоит из множества одинаковых параллелепипедов, которые целиком, без промежутков, заполняют пространство. Материальные частицы обычно располагаются вузлахрешетки — точках пересечения ееребер.

Элементарная ячейка — это наименьший параллелепипед, с помощью которого можно построить всю пространственную решетку путем непрерывных параллельных переносов (трансляций) в трех направлениях пространства.

1. Из равенства осевых единиц a=b=c и осевых углов α=β=γ=90° следует, что сингония является кубической.

2. Определим число атомов алмаза в элементарной ячейке 1/8*8+1/2*6 + 4=8. 1/8 – доля каждого атома алмаза, находящегося в вершине в элементарной ячейке данной структуры. 8 – число таких атгмов.1/2 – доля каждого атома находящегося в грани элементарной ячейки алмаза, граней 6, 4 атома внутри решетки.

3. Атомы алмаза образуют сложную кубическую гранецентрированную ячейку Бравэ.

 

Билет 16.

1. Равновесные и неравновесные носители заряда в полупроводниках.

 

Положение уровня Ферми в собственных и примесных полупроводниках связано с концентрацией носителей заряда, установившейся при данной температуре в состоянии термодинамического равновесия. Переброс электронов в зону проводимости за счет температурного возбуждения и возникновение в результате этого процесса дырок в валентной зоне называется термической генерацией свободных носителей заряда. Одновременно происходит и обратный процесс: электроны возвращаются в валентную зону, в результате чего исчезают электрон и дырка. Этот процесс называетсярекомбинацией носителей заряда. Для количественного описания процессов генерации и рекомбинации носителей заряда в полупроводниках используют понятияскоростигенерации,скоростирекомбинацииивременижизниносителей заряда.

Скорость генерации носителей - это число носителей, возбуждаемых в единичном объеме полупроводника за единицу времени.

Скорость рекомбинации носителей - это число носителей, рекомбинирующих в единице объема полупроводника за единицу времени.

Время жизни носителей t - это среднее время от генерации носителя до его рекомбинации.

Из приведенных выше определений непосредственно следуют следующие соотношения между скоростями рекомбинации электронов RnидырокRpи их временами жизниtnиtpсоответственно:

(28)

Здесь учтено, что 1/t- вероятность рекомбинации носителя за единицу времени.

При фиксированной температуре устанавливается термодинамическое равновесие, при котором процессы генерации и рекомбинации взаимно уравновешиваются. Такие носители, находящиеся в тепловом равновесии с кристаллической решеткой, называются равновесными.

Электропроводность полупроводника может быть возбуждена и другими способами, например, облучением светом, действием ионизирующих частиц, электрическим полем, инжекцией носителей через контакт и др. Во всех этих случаях дополнительно к равновесным носителям в полупроводнике возникают носители заряда, которые не будут находиться в состоянии теплового равновесия с кристаллом. Такие носители называются неравновесными.

Общую концентрацию электронов в зоне проводимости nв случае равновесных и неравновесных носителей можно представить в виде

(29)

где n0– концентрация равновесных электронов;Dn- концентрация неравновесных электронов.

Общая концентрация дырок

(30)

где p0 иDp- равновесная и неравновесная концентрации дырок соответственно.

Поскольку распределение Ферми-Дирака справедливо только для состояния термодинамического равновесия, то понятно, что статистика неравновесных носителей должна быть иной. В отсутствие термодинамического равновесия принято вводить два новых параметра распределения – квазиуровень Ферми EFnдля электронов и квазиуровень Ферми EFpдля дырок. Эти параметры выбирают таким образом, чтобы для концентраций электронов и дырок при наличии неравновесных носителей выполнялись уравнения (17) и (19) соответственно при условии заменыEF наEFn для электронов и наEFp для дырок. Таким образом, в невырожденных полупроводниках справедливы уравнения

(31)

 

(32)

Рисунок 7 Расщепление уровня Ферми на два квазиуровня - для электронов и для дырок : а - равновесное состояние; б - неравновесное состояние

Поскольку при наличии избыточных носителей заряда закон действующих масс не выполняется ( ), т.к. нет никакой зависимости междуDn иDp, квазиуровни Ферми для электронов и дырок разные и не совпадают с равновесным уровнем Ферми (рис.7).

В состоянии термодинамического равновесия квазиуровни Ферми совпадают с равновесным уровнем Ферми EF. Чем выше концентрация неравновесных носителей заряда, тем дальше отстоят квазиуровни Ферми от уровня Ферми. Из уравнений (31), (32), (17) и (19) следует

(33)

Это соотношение выражает связь между концентрациями электронов и дырок в неравновесном состоянии. Разность энергий характеризует отклонение от состояния термодинамического равновесия. Еслиnp>n0 ·p0, то . Это условие соответствуетинжекции(вбрасыванию) избыточных носителей. Еслиnp<n0 p0 , то говорят обэкстракции (обеднении) носителей.

Работа выхода. Свойства перехода и эффекты при контакте двух металлов.

Как показывает эксперимент, свободные электроны при обычных температурах практически не покидают металл, что свидетельствует о наличии в поверхностном слое задерживающего поля.

Работой выхода называется минимальная энергия, которую необходимо сообщить электрону, чтобы вывести его из твердого тела в вакуум.

С точки зрения классической физики наличие удерживающего поля объясняется возникновением на границе металла двойного электрического слоя, состоящего из положительных ионов и электронного облака, толщиной порядка 10-10-10-9м, которое препятствует вылету электронов.

Согласно зонной теории при температурах вблизи абсолютного нуля должны быть заполнены последовательно без промежутков все энергетические состояния электронов, начиная с уровня с наименьшей энергией, и существует резкая граница между заполненными и свободными уровнями.

При более высоких температурах эта граница размывается и ширина переходной зоны от практически полностью заполненных уровней до практически полностью свободных порядкаkT.

Наивысший занятый электронами уровень называется уровнем Ферми, а соответствующая ему энергия – энергией Ферми ( или ЕF). Следовательно, работа выхода равна работе перемещения электрона с уровня Ферми за пределы твердого тела, т.е. определяется разностью энергии свободного электрона и его энергией на уровне Ферми: (рис.205). В соответствии с этим говорят, что электроны внутри твердого тела находятся в потенциальной яме, глубина которой равна работе выхода.

 

РИС.205 РИС.206

 

На рис.205а представлена потенциальная яма для металлов, а на рис.205б – для диэлектриков. Ев и Еп - валентная и зона проводимости соответственно.

Работа выхода зависит от химического строения металла и чистоты поверхности. Она составляет 4,53 эВ для молибдена, 4,39 – для меди, 6,3 эВ – для платины, и может быть изменена нанесением покрытия на поверхность металла. Например, покрытие молибдена оксидом кальция или бария снижает работу выхода до 2,2 эВ.

В 1797 г. итальянский физик А.Вольта экспериментально установил, что если ряд металлов привести в контакт в определенной последовательности: Al, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd, то каждый предыдущий при соприкосновении с одним из последующих заряжается положительно. Этот ряд называется рядом Вольта, а возникающие контактные разности потенциалов составляют от нескольких десятых вольта до целых вольт.

Вольт экспериментально установил два закона для этого ряда последовательно соединенных металлов.

1.Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов.

2.Контактная разность между концами ряда последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, возникающей при непосредственном соединении крайних проводников.

С точки зрения классической теории возникающая при контакте разность потенциалов обусловлена различиями в концентрации свободных электронов и разными работами выхода.

Согласно зонной теории при контакте двух металлов с различными работами выхода А1, а следовательно, различными уровнями Ферми (рис.206а), происходит переход электронов с более высоких энергетических уровней на более низкие (рис.206б). Этот процесс продолжается до совпадения заполненных уровней, т.е. равенства энергии электронов в обоих металлах.

Между внутренними точками металлов, в контактном слое порядка 10-10м, возникает внутренняя разность потенциалов . Из равенства энергий электронов: следует, что внутренняя разность потенциалов: .

Между внешними не контактирующими поверхностями металлов возникает внешняя разность потенциалов, которую можно определить, выразив работу выхода для каждого металла как разность энергий электрона вне металла и внутри металла:

и

При контакте внутренние энергии равны и внешняя разность потенциалов . Измерить эту разность потенциалов для металлов находящихся в воздухе достаточно трудно из-за сорбции на поверхности ионов.

Необходимо отметить, что аналогичные процессы возникают при контактах металлов и с веществами, которые при реальных температурах относят к диэлектрикам или полупроводникам.


Дата добавления: 2018-05-13; просмотров: 852; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!