Свойства плотности распределения случайного вектора.



1.

2. .

.

Теорема 1. Пусть —непрерывный случайный вектор. Тогда случайные величины  и  — непрерывны, причем , .

3. , где —множество из пространства .

 


Теорема Пуассона.

Теорема. Если вероятность р появления события А в каждом испытании при неограниченном возрастании числа испытаний n изменяется таким образом, что некоторое событие А появится ровно k раз в n независимых испытаниях стремится к величине , то есть .

По формуле Бернулли вероятность того, что событие появится ровно k раз в n независимых испытаниях

 

Схема независимых испытаний Бернулли. Полиномиальное распределение.

Предположим, что в результате испытания возможны два исхода: «У» и «Н», которые мы называем успехом и неудачей. , , p+q=1. Предположим, что мы производим независимо друг от друга n таких испытаний.

Опр. Последовательность n испытаний называется испытаниями Бернулли, если эти испытания независимы, а в каждом из них возможны два исхода, причем вероятности этих исходов не меняются от испытания к испытанию.

Элементарным исходом будет являться: (w1,w2,…,wn), . Всего таких исходов 2n. . (1)Формула (1) показывает, что события независимы. Обозначим через µ число успехов в n испытаниях Бернулли. — вероятность того, что в n испытаниях произошло k успехов. Рассмотрим событие . По теореме сложения получим

Таким образом, получим —формула Бернулли.

 

Случайные величины. Функции распределения и их свойства.

Опр. Случайной величиной Хназывается функция X(w), отображающая пространство элементарных исходов Ω во множестве действительных чисел R.

Множество значений случайной величины обозначается Ωх.

Опр. Функцией распределения случайной величины Хназывается функция F(x) действительной переменной х, определяющая вероятность того, что случайная величина Х примет в результате эксперимента значение, меньшее некоторого фиксированного числа х. . .

Свойство 1. Функция распределения F(x)–неубывающая функция, т.е. для  таких что x1<x2 .Пусть х1 и х2 принадлежат множеству Ωх и х12.Событие, состоящее в том, что Х примет значение, меньшее, чем х2, т.е. , представим в виде объединения двух несовместимых событий . Тогда по теореме сложения вероятностей получим , т.е. . Поскольку , то .

Дискретные случайные величины. Законы распределения биномиальное, геометрическое и Пуассона.

Опр. Случайная величина Х называется дискретной, если она принимает конечное либо счетное число значений, т.е. Ωх—конечно или счетно.

Опр. Законом распределения дискретной случайной величины Х называется совокупность пар чисел вида (хi, рi), где xi—возможные значения случайной величины, а pi—вероятности, с которыми случайная величина принимает эти значения, т.е. , причем .

Опр. Говорят, что дискретная случайная величина Х имеет биномиальное распределение с параметрами (n,p), если она может принимать целые неотрицательные значения  с вероятностями .

Опр. Говорят, что случайная величина Х имеет распределение Пуассона с параметром λ (λ>0), если она принимает целые неотрицательные значения  с вероятностями . Обозначают , т.е. случайная величина Х имеет распределение Пуассона с параметром λ.

Опр. Говорят, что случайная величина Х имеет геометрическое распределение с параметром р (0<р<1), если она принимает натуральные значения  с вероятностями , где q=1-p.

.

 

 


Дата добавления: 2018-05-13; просмотров: 340; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!