Металлическая основа чугунов. Графитизирующий отжиг.



В машиностроении применяют отливки из серого, я ковкого и высокопрочного чугунов. Эти чугуны отличаются от белого чугуна тем, что у них весь углерод или большая часть его находится в свободном состоянии в виде графита (у белого чугуна весь углерод находится в виде цементита).

Структура указанных чугунов состоит из металлической основы аналогично стали (перлит и феррит) и неметаллических включений – графита.

Серый, ковкий и высокопрочный чугуны отличаются друг от друга в основном формой графитовых включений. Это и определяет различие механических свойств указанных чугунов.

У серого чугуна при рассмотрении под микроскопом графит имеет форму пластинок.

Графит обладает низкими механическими свойствами. Он нарушает сплошность металлической основы и действует как надрез или мелкая трещина. Чем крупнее и прямолинейнее формы графитовых включений, тем хуже механические свойства серого чугуна.

Основное отличие высокопрочного чугуна заключается в том, что графит в нем имеет шаровидную (округленную) форму. Такая форма графита лучше пластинчатой, так как при этом значительно меньше нарушается сплошность металлической основы.

Ковкий чугун получают длительным отжигом отливок из белого чугуна, в результате которого образуется графит хлопьевидной формы – углерод отжига.

Механические свойства рассматриваемых чугунов можно улучшить термической обработкой, при этом необходимо помнить, что в чугунах создаются значительные внутренние напряжения, поэтому нагревать чугунные отливки при термической обработке следует медленно, чтобы избежать образования трещин.

Отливки из чугуна подвергают следующим видам термической обработки.

Низкотемпературный отжиг. Чтобы снять внутренние напряжения и стабилизировать размеры чугунных отливок из серого чугуна, применяют естественное старение или низкотемпературный отжиг.

Более старым способом является естественное старение, при котором отливка после полного охлаждения претерпевает длительное вылеживание – от 3–5 месяцев до нескольких лет. Естественное старение применяют в том случае, когда нет нужного оборудования для отжига.

Этот способ в настоящее время почти не применяют, а производят главным образом низкотемпературный отжиг. Для этого отливки после полного затвердевания укладывают в холодную печь (или печь с температурой 100–200° С) и медленно (со скоростью 75–100° в час) нагревают до 500–550° С. При этой температуре их выдерживают 2–5 час. и охлаждают до 200° С со скоростью 30–50° в час, а затем – на воздухе.

Графитизирующий отжиг. При отливке изделий возможен частичный отбел серого чугуна с поверхности или даже по всему сечению. Чтобы устранить отбел и улучшить обрабатываемость чугуна, производится высокотемпературный Графитизирующий отжиг с выдержкой при температуре 900–950° С в течение 1–4 час. и охлаждением изделий до 250–300° С вместе с печью, а затем – на воздухе. При таком отжиге в отбеленных участках цементит Fe3С распадается на феррит и графит, вследствие чего белый или половинчатый чугун переходит в серый.

Нормализация. Нормализации подвергают отливки простой формы и небольших сечений. Нормализация проводится при температуре 850–900° С с выдержкой 1–3 часа и последующим охлаждением отливок на воздухе. При таком нагреве часть углерода (графита) растворяется в аустените. После охлаждения на воздухе металлическая основа получает структуру трооститовидного перлита с более высокой твердостью и лучшей сопротивляемостью износу. Для серого чугуна нормализацию применяют сравнительно редко, более широко применяют закалку с отпуском.

Закалка деталей из серого чугуна. Повысить прочностные свойства серого чугуна можно его закалкой. Она производится с нагревом до 850–900° С и охлаждением в воде. Закалке можно подвергать как перлитные, так и ферритные чугуны. Твердость чугуна после закалки достигает НВ 450–500. В структуре закаленного чугуна имеются мартенсит со значительным количеством остаточного аустенита и выделения графита.

Эффективным методом повышения прочности и износоустойчивости серого чугуна является изотермическая закалка, которая производится аналогично закалке стали.

Высокопрочные чугуны с шаровидным графитом можно подвергать пламенной или высокочастотной поверхностной закалке. Чугунные детали после такой обработки имеют высокую поверхностную твердость, вязкую сердцевину и хорошо сопротивляются ударным нагрузкам и истиранию.

Легированные серые чугуны и высокопрочные магниевые чугуны иногда подвергают азотированию. Поверхностная твердость азотированных чугунных изделий достигает НВ 600—800; такие детали имеют высокую износоустойчивость. Хорошие результаты дает сульфидирование чугуна; так, например, сульфидированные поршневые кольца быстро прирабатываются, хорошо сопротивляются истиранию, и срок их службы повышается в несколько раз.

Отпуск. Чтобы снять закалочные напряжения, после закалки производят отпуск. Детали, предназначенные для работы на истирание, проходят низкий отпуск при температуре 200–250° С. Чугунные отливки, не работающие на истирание, подвергаются высокому отпуску, при температуре 500–600° С. При отпуске закаленных чугунов твердость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна имеется большое количество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчивость мартенсита.

Для отжига на ковкий чугун применяют белый чугун примерно следующего химического состава: 2,5–3,2% С, 0,6–0,9% Si, 0,3–0,4% Мn, 0,1–0,2% Р и 0,06-0,1% S.

Существует 2 способа отжига на ковкий чугун:

графитизирующий отжиг в нейтральной среде, основанный на разложении цементита на феррит и углерод отжига;

обезуглероживающий отжиг в окислительной среде, основанный на выжигании углерода.

Отжиг на ковкий чугун по второму способу занимает 5–6 суток, поэтому в настоящее время ковкий чугун получают главным образом графитизацией. Отливки, очищенные от песка и литников, упаковывают в металлические ящики либо укладывают на поддоне, а затем подвергают отжигу в методических камерных и других отжигательных печах.

Процесс отжига состоит из двух стадий графитизации. Первая стадия заключается в равномерном нагреве отливок до температуры 950–1000° С с выдержкой 10–25 час.; затем температуру понижают до 750– 720° С при скорости охлаждения 70–100° в час. На второй стадии при температуре 750–720° С дается выдержка 15–30 час., затем отливки охлаждаются вместе с печью до 500–400° С и при этой температуре извлекаются на воздух, где охлаждаются с произвольной скоростью.

При таком ступенчатом отжиге в области температур 950–1000° С идет распад (графитизация) первичного, т. е. эвтектического (ледебуритного) цементита, а при температуре 750—720° С распадаются вторичный и эвтектоидный (перлитный) цементиты. В результате отжига по такому режиму структура ковкого чугуна представляет собой зерна феррита с включениями гнезд углерода отжига – графита.

Перлитный ковкий чугун получается в результате неполного отжига: после первой стадии графитизации при температуре 950–1000° С чугун охлаждается вместе с печью; вторая стадия графитизации не проводится. Структура перлитного ковкого чугуна состоит из перлита и углерода отжига.

Чтобы повысить вязкость, перлитный ковкий чугун подвергают сфероидизации при температуре 700–750° С, что создает структуру зернистого перлита.

Для ускорения процесса отжига на ковкий чугун изделия из белого чугуна подвергают закалке, затем проводят графитизацию при температуре 1000–1100° С.

Ускорение графитизации закаленных чугунов при отжиге объясняется наличием большого количества центров графитизации, образовавшихся при закалке. Это дает возможность сократить время отжига закаленных отливок до 15–7 час.

Метод предварительного нагрева и закалки отливок из белого чугуна разработан металлургами А. Д. Ассоновым и В. И. Прядиновым и широко применяется в различных отраслях промышленности.

Термическая обработка ковкого чугуна. Чтобы повысить прочность и износоустойчивость, ковкие чугуны подвергают нормализации или закалке с отпуском. Нормализация ковкого чугуна производится при 850–900°С с выдержкой при этой температуре 1–1,5 часа и охлаждением на воздухе. Если после отливки заготовки имеют повышенную твердость, то их следует подвергать высокому отпуску при температуре 650–680° С с выдержкой 1–2 часа.

Иногда ковкий чугун подвергают закалке, чтобы получить более высокую прочность и износоустойчивость за счет снижения пластичности. Температура нагрева под закалку та же, что и при нормализации; охлаждение производится в воде или масле, а отпуск, в зависимости от требуемой твердости, обычно при температуре 650–680° С.

Быстрое охлаждение может производиться непосредственно после первой стадии графитизации при достижении температуры 850–880° С с последующим высоким отпуском.

Для ковкого чугуна применяют закалку токами высокой частоты или кислородно-ацетиленовым пламенем, при этом может быть достигнута высокая твердость поверхностного слоя при достаточной пластичности основной массы. Метод такой закалки тормозных колодок из ферритного ковкого чугуна заключается в нагреве деталей токами высокой частоты до температуры 1000– 1100° С с выдержкой 1–2 мин. и последующим быстрым охлаждением. Структура закаленного слоя состоит из мартенсита и углерода отжига твердостью НRС 56–60.

Ковкий чугун по сравнению со сталью более дешевый материал; он обладает хорошими механическими свойствами и высокой коррозионной стойкостью. Поэтому детали из ковкого чугуна широко применяются в сельскохозяйственном машиностроении, автотракторной промышленности, станкостроении (для изготовления зубчатых колес, звеньев цепей, задних мостов, кронштейнов, тормозных колодок и пр.) и в других отраслях народного хозяйства.

Ковкие чугуны маркируют буквами КЧ, означающими ковкий чугун, затем идут два числа: первое число показывает предел прочности при растяжении, второе – относительное удлинение.

ГОСТом 1215-59 установлены следующие марки ковких чугунов: КЧЗО-6, КЧЗЗ-8, КЧ35-10. . КЧ37-12, КЧ45-6, КЧ50-4, КЧ56-4, КЧ60-3 и КЧ63-2.

При многих видах термической обработки сталь нагревают до температур, соответствующих существованию аустенита (процесс аустенитизации).

Образование аустенита при нагреве является диффузионным процессом и подчиняется основным положениям теории кристаллизации.

При нагреве эвтектоидной стали (0,8% С) несколько выше критической точки А1 (727 °С) перлит (феррито-карбидная структура) превращается в аустенит:

ФP + Fе3С → АS.

Превращение состоит из двух одновременно протекающих процессов: полиморфного α → γ-перехода и растворения в аустените цементита.

При нагреве доэвтектоидной стали выше точки А1 после превращения перлита в аустенит образуется двухфазная структура – аустенит и феррит.

При дальнейшем нагреве в интервале температур А1–А3феррит постепенно растворяется в аустените. При температуре А3 феррит исчезает, а концентрация углерода в аустените соответствует содержанию его в стали. Аналогично протекает превращение и в заэвтектоидной стали. При температуре несколько выше А1 (727 °С) перлит превращается в аустенит, содержащий 0,8 % С. В интервале температур А1–Асm происходит растворение избыточного цементита. Выше температуры Асm будет только аустенит, содержание углерода в котором соответствует его содержанию в стали.

Аустенит при температурах несколько выше Ас1 (727 °С) содержит ~ 0,8 % С. Зародыши аустенита образуются на границе раздела феррита и цементита (рис. 4.15, в), где наличие дефектов уменьшает работу образования зародыша аустенита. При росте зародыша когерентность α- и γ-решеток нарушается, сдвиговый механизм заменяется нормальным механизмом роста и зерна аустенита приобретают равноосную форму. Образовавшийся аустенит неоднороден по содержанию углерода. В участках, прилегающих к частицам цементита, концентрация углерода в аустените выше (точка бна рис. 4.15, а), чем в участках, прилегающих к ферриту (точка в на рис. 4.15, а).

Под влиянием этого градиента перепада концентрации происходит диффузия атомов углерода в аустените в направлении от границы с цементитом к участкам, граничащим с ферритом, что приводит к нарушению равновесия на межфазных поверхностях между аустенитом и указанными фазами. Восстановление равновесия достигается в результате дальнейшего растворения цементита в аустените и перехода атомов углерода в феррит, что облегчает превращение его в аустенит.

Образовавшийся в результате описанных превращений аустенит неоднороден по составу, и для его гомогенизации требуется дополнительное время.

Скорость превращения феррито-цементитной структуры в аустенитную, помимо температуры нагрева, зависит от ее исходного состояния. Чем тоньше феррито-цементитная структура, тем больше возникает зародышей аустенита и меньше пути диффузии, а значит, быстрее протекает процесс аустенитизации. Чем больше в стали углерода, тем быстрее протекает процесс аустенитизации, что объясняется увеличением количества цементита, а следовательно, и ростом суммарной поверхности раздела феррита и цементита. Введение в сталь хрома, молибдена, вольфрама, ванадия и других карбидообразующих элементов задерживает процесс аустенитизации вследствие образования легированного цементита или карбидов легирующих элементов, более трудно растворимых в аустените Размер зерна аустенита при нагреве обуславливается несколькими факторами.

Рис. 4.15. Превращение стали с феррито-цементитной структурой при нагреве: а – схема изменений фазового состава при нагреве (диаграмма Fe–Fe3C); б – схема изотермического образования аустенита; в – последовательные стадии превращения перлита в аустенит (1 – начало превращения перлита в аустенит; 2 – конец превращения перлита в аустенит; 3 – полное растворение карбидов; 4 – гомогенизация аустенита)

Зародыши аустенита при нагреве выше A1 образуются на границах раздела феррит–карбид. При таком нагреве число зародышей всегда достаточно велико и начальное зерно аустенита мелкое. Однако нередко при таких невысоких температурах нагрева наблюдается разнозернистость – на фоне мелкого зерна отмечаются и очень крупные зерна.

При дальнейшем повышении температуры или увеличении длительности выдержки при данной температуре происходит собирательная рекристаллизация, и зерно увеличивается. Рост зерна аустенита происходит самопроизвольно и вызывается стремлением системы к уменьшению свободной энергии вследствие сокращения поверхности зерен.

Способность зерна аустенита к росту неодинакова даже у сталей одного марочного состава вследствие влияния условий их выплавки.

По склонности к росту зерна различают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые.

В наследственно мелкозернистой стали при нагреве до высоких температур (1 000–l 050 °C) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше А1 (рис. 4.16).

В двухфазных областях, например в заэвтектоидных сталях, в интервале температур Ас1–Асm (рис. 4.16, а) рост зерна аустенита сдерживается не растворившимися карбидными частицами. Такое же сдерживающее влияние на рост зерна в доэвтектоидных сталях в интервале температур Ас1–Асm (рис. 4.16, а) оказывают участки феррита.

Легирующие элементы, особенно карбидообразующие, замедляющие собирательную рекристаллизацию, задерживают рост зерна аустенита. Наиболее сильно действуют Ti, V, Zr, Nb, W и Мо, образующие труднорастворимые в аустените карбиды, которые служат барьером. Более слабое влияние оказывает такой карбидообразующий элемент, как хром. Марганец и фосфор способствуют росту зерна аустенита.

Рис. 4.16. Диаграмма состояния Fe–Fe3C (а) и схема роста зерна аустенита в стали, содержащей 0,8 % С (б): 1 –

 

Рис. 4.15. Превращение стали с феррито-цементитной структурой при нагреве: а – схема изменений фазового состава при нагреве (диаграмма Fe–Fe3C); б – схема изотермического образования аустенита; в – последовательные стадии превращения перлита в аустенит (1 – начало превращения перлита в аустенит; 2 – конец превращения перлита в аустенит; 3 – полное растворение карбидов; 4 – гомогенизация аустенита)

 

Зародыши аустенита при нагреве выше A1 образуются на границах раздела феррит–карбид. При таком нагреве число зародышей всегда достаточно велико и начальное зерно аустенита мелкое. Однако нередко при таких невысоких температурах нагрева наблюдается разнозернистость – на фоне мелкого зерна отмечаются и очень крупные зерна.

При дальнейшем повышении температуры или увеличении длительности выдержки при данной температуре происходит собирательная рекристаллизация, и зерно увеличивается. Рост зерна аустенита происходит самопроизвольно и вызывается стремлением системы к уменьшению свободной энергии вследствие сокращения поверхности зерен.

Способность зерна аустенита к росту неодинакова даже у сталей одного марочного состава вследствие влияния условий их выплавки.

По склонности к росту зерна различают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые.

В наследственно мелкозернистой стали при нагреве до высоких температур (1 000–l 050 °C) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше А1 (рис. 4.16).

В двухфазных областях, например в заэвтектоидных сталях, в интервале температур Ас1–Асm (рис. 4.16, а) рост зерна аустенита сдерживается не растворившимися карбидными частицами. Такое же сдерживающее влияние на рост зерна в доэвтектоидных сталях в интервале температур Ас1–Асm (рис. 4.16, а) оказывают участки феррита.

 

Легирующие элементы, особенно карбидообразующие, замедляющие собирательную рекристаллизацию, задерживают рост зерна аустенита. Наиболее сильно действуют Ti, V, Zr, Nb, W и Мо, образующие труднорастворимые в аустените карбиды, которые служат барьером. Более слабое влияние оказывает такой карбидообразующий элемент, как хром. Марганец и фосфор способствуют росту зерна аустенита.

Рис. 4.16. Диаграмма состояния Fe–Fe3C (а) и схема роста зерна аустенита в стали, содержащей 0,8 % С (б): 1 – наследственно мелкозернистая сталь; 2 – наследственно крупнозернистая сталь; 3 – наследственное зерно; 4 – зерно при нагреве под термическую обработку; 5 – исходное зерно; 6 – начальное зерно аустенита

Наследственно мелкозернистая сталь при достаточно высокой температуре может даже иметь более крупное зерно аустенита, чем наследственно крупнозернистая сталь, поэтому введено понятие о действительном зерне, т.е. зерне, существующем в стали при данной температуре.

Размер действительного зерна аустенита обусловлен температурой нагрева, продолжительностью выдержки при ней и склонностью данной стали к росту зерна при нагреве.

Продолжительный нагрев доэвтектоидной (заэвтектоидной) стали при температурах, значительно превышающих А3 или Асm, приводит к образованию крупного действительного зерна как непосредственно при этой температуре, так и после охлаждения до 20 °С. Такой нагрев принято называть перегревом стали. Перегретая сталь характеризуется крупнокристаллическим изломом.

Рост видманштеттовых кристаллов феррита происходит при высоких температурах в условиях диффузии углерода

 

Перегрев может быть исправлен повторным нагревом стали доэвтектоидной до температуры выше точки А3, а эвтектоидной и заэвтектоидной – выше А1.

 

Нагрев при еще более высокой температуре, чем нагрев, вызывающий перегрев, и к тому же в окислительной атмосфере, называют пережогомстали. Он сопровождается образованием по границам зерен окислов железа. При пережоге излом стали камневидный. Пережог – неисправимый дефект стали.

 

Величина зерна стали не оказывает существенного влияния на стандартный комплекс механических свойств, получаемых при испытании на статическое растяжение и твердость, но с ростом зерна резко снижается ударная вязкость, работа распространения трещины и повышается порог хладноломкости. Чем крупнее зерно, тем более сталь склонна к закалочным трещинам и деформациям. Все это следует учитывать при выборе режимов термической обработки.


Дата добавления: 2018-05-12; просмотров: 2032; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!