Регулирование координат электропривода



Требования к координатам электропривода и формированию его статических и динамических характеристик

Электрический привод служит не только для приведения в движение рабочих органов механизма, но и управляет его технологическим процессом. При управлении требуется не только поддерживать на заданном уровне такие переменные (координаты), как момент двигателя, скорость и ускорение механизма, или изменять их по заданным законам с требуемой по условиям технологии точностью, но одновременно и ограничивать эти переменные уровнем, допустимым по условиям технологии или прочности механического оборудования.

Управление движением электропривода и технологическим процессом установки, как правило, требует регулирования нескольких координат, различных на разных этапах работы. В зависимости от задач управления регулирование координат может осуществляться с целью:

а) поддержания заданного уровня переменной;

б) изменения переменной по заданному закону;

в) ограничения переменной допустимым значением;

г) отработки законов движения, задаваемых на входе системы с требуемой точностью.

Возможные следующие способы управления переменными:

а) параметрические способы, используемые в разомкнутых системах;

б) способы автоматического управления, основанные на изменении подводимого к двигателю напряжения, а для двигателей переменного тока еще и частоты при использовании обратных связей, что имеет место в замкнутых системах.

Хотя параметрические способы, основанные на изменении параметров цепей двигателей, широко и применяются в современном электроприводе, однако возможности их ограничены, т.к. во многих случаях при таком регулировании нельзя обеспечить требуемые режимы работы и показатели. Поэтому область разомкнутых систем электропривода сужается и они заменяются замкнутыми системами с обратными связями.

Автоматическое регулирование переменных осуществляется по отклонению переменной от заданного значения с помощью отрицательной обратной связи по регулируемой переменной (это основной способ регулирования).

 

Основные показатели способов регулирования координат электропривода

Для сопоставления между собой возможных способов регулирования координат используются следующие обобщенные показатели:

1. Точность (стабильность) регулирования.

2. Диапазон регулирования.

3. Плавность регулирования.

4. Динамические показатели качества регулирования.

5. Экономичность регулирования.

6. Допустимая нагрузка при регулировании.

Точность регулирования или иначе точность поддержания заданной переменной Х определяется возможными отклонениями ее от заданного значения под действием возмущающих факторов, например, изменении нагрузки при регулировании скорости, изменении скорости при регулировании момента и т.п. В разомкнутых системах оценкой точности может служить отношение наибольшего отклонения (рис. 5.2.1) регулируемой величины к среднему значению

 

Чем жестче зависимость Х от Fв, тем точнее регулирование.

Диапазон регулирования характеризует пределы изменения средних значений переменной Х, возможные при данном способе регулирования (рис. 5.2.2)

Обычно Д обозначается в числах, например .

 

Верхний предел регулирования переменной ограничивается максимально допустимым или максимально реализуемым значением переменной, а нижний предел – необходимой точностью поддержания заданной переменной и возможностью практической реализации при данном способе регулирования.

Например, верхний предел регулирования скорости двигателя ограничивается механической прочностью якоря или ротора, а для двигателей постоянного тока еще и условиями коммутируемой, т.к. с увеличением скорости возрастает реактивная ЭДС в коммутируемой секции обмотки якоря. Нужно иметь в виду, что снижение среднего значения регулируемой переменной приводит к росту относительной ошибки Dх*макс регулирования. Если показанное на рис. 5.2.2 значение хср.мин считать минимально допустимым по условиям точности регулирования, то ему при заданной допустимой относительной ошибке Dх*доп соответствует соотношение

Плавность регулирования характеризуется числом дискретных (промежуточных) значений регулируемой переменной, получаемых при данном способе регулирования в диапазоне регулирования. Она тем выше, чем меньше скачок переменной при переходе от данного ее значения к ближайшему возможному значению. Иногда для оценки плавности используется понятие коэффициента плавности, под которым понимается отношение двух соседних значений переменной

Чем ближе кпл к единице, тем плавнее регулирование.

При автоматическом регулировании координат электропривода важное значение имеют динамические показатели качества регулирования, оцениваемые по характеру переходного процесса при скачке управляющего воздействия. Главным показателем быстродействия, непосредственно влияющим на производительность ряда механизмов, является время пуска и торможения электропривода. Быстродействие характеризуется такими показателями, как время запаздывания tз, время регулирования tр, за которое переменная первый раз достигает установившегося значения хуст, время максимума tмакс, общее время переходного процесса tпп, за которое затухают все его свободные составляющие (рис. 5.2.3).

 

Перерегулирование представляет собой динамическую ошибку и характеризуется максимальным отклонением Dхмакс от хуст при tмакс, отнесенным к установившемуся значению регулируемой переменной

Колебательность характеризуется наименьшим значением логарифмического декремента, соответствующего комплексно–сопряженным корням характеристического уравнения системы или частотным показателем колебательности.

Экономичность регулирования оценивается по первоначальным капитальным затратам, связанным с созданием данной системы электропривода, и по эксплуатационным расходам на электроэнергию, оцениваемым главным образом по таким показателям, как КПД и коэффициент мощности при регулировании скорости.

При оценке экономической эффективности должны учитываться не только указанные факторы, но и то, что дополнительные затраты и эксплуатационные расходы на создание более совершенной системы регулирования должны окупиться повышением производительности и надежности работы системы, а также улучшением качества продукции.

Одной из главных переменных, необходимость регулирования, которой диктуется технологическими требованиями, в большинстве случаев является скорость электропривода. При ее регулировании необходимо знать, какие механические нагрузки могут быть допустимы на валу двигателя. Поэтому одним из важнейших показателей является допустимая нагрузка. Необходимость ее оценки возникает в связи с тем, что Мс приводимого механизма в общем случае также зависит от скорости.

Допустимая нагрузка зависит от метода регулирования скорости, ограничивается нагревом двигателя, вызванным потерями энергии в нем. Они же определяются главным образом величиной потребляемого тока. Обычно считается, что двигатель работает нормально, если при продолжительной нагрузке токи в цепях его обмоток не превышают номинального значения. В этом случае двигатель не нагревается выше допустимой температуры. Для определения допустимой нагрузки (допустимого момента) необходимо найти его величину, соответствующую номинальному току главной цепи двигателя при различных скоростях, и тем самым установить зависимость Мдоп=f(ω).

Весьма существенным является обеспечение соответствия закона изменения Мс и характера зависимости предельно допустимого по условиям нагрева момента двигателя от скорости. Рациональное использование двигателя при регулировании скорости будет в том случае, когда эквивалентный по нагреву момент двигателя при изменении рабочей скорости будет меняться по такому же закону, что и Мс. При отсутствии такого совпадения двигатель будет плохо использоваться в тепловом отношении в одной части диапазона изменения скорости и может оказаться перегруженным в другой.

Момент и мощность, развиваемая двигателем, зависит от метода регулирования. Регулирование возможно при постоянстве момента и при постоянстве мощности, т.е. различаются две зоны регулирования (см. рис.5.2.4)

 

Зона I соответствует регулированию при постоянстве момента. Например, в случае ДНВ при номинальном токе и Ф=Фн

Мощность Р2 на валу двигателя в этой зоне изменяется по линейному закону, т.е. пропорциональна скорости

Зона II соответствует регулированию с постоянной мощностью. В этом случае (применительно к ДНВ при ослаблении магнитного потока) с увеличением скорости момент изменяется по закону гиперболы (нагрузку двигателя необходимо уменьшить так, чтобы при любой данной скорости момент двигателя был равен Мс).

 

 


Дата добавления: 2018-05-12; просмотров: 2384; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!