Дискретные элементы. Преобразователи кодов. Функциональное назначение. Реализация на базовых логических элементах и интегральных микросхемах.



Преобразователем кодов называется цифровое устройство, осуществляющее преобразование слов входного алфавита (x1, х2,..., хn) в слова выходного алфавита (y1, y2, ..., yk). Соотношения между числами слов могут быть любыми: n = к, n > к, n < к. Преобразователи кодов можно разделить на два типа:

с весовым преобразователем кодов;

с невесовым преобразователем кодов

Примером преобразователей первого типа являются преобразователи десятичных кодов в двоичные, двоично-десятичных кодов в двоичные, двоичных кодов в десятичные и двоично-десятичных в двоичные, и другие. Преобразователи второго типа используются для преобразования двоично-десятичного кода в код семисегментного индикатора десятичных цифр, двоичного кода в код Грея и другие. Эти задачи решаются разными путями. Одним из таких путей является применение комбинационных узлов, называемых преобразователями кодов. Вариант условного обозначения преобразователя кода приведен на рис. 2.34.

Рисунок 2.34 - Условное графическое обозначение преобразователя кода

Одним из весьма распространенных путей реализации преобразователей кодов является метод последовательного соединения дешифратора и шифратора (рис. 2.35).

Рисунок 2.35 - Схема преобразователя кода на основе дешифратора и шифратора

Дешифратор преобразовывает входной код (X1, X2, Х3) в некоторую пространственную позицию, которая затем вновь кодируется шифратором в соответствии с заданием в код (Y1, Y2, Y3). Такой путь чрезвычайно прост и, гибок в реализации (поскольку изменение способа кодирования может быть достигнуто простой перепайкой шин, соединяющих дешифратор и шифратор). Однако здесь неизбежна аппаратурная избыточность схем, и, как правило, увеличивается задержка сигналов по сравнению с минимально достижимой в оптимальных схемах. Такие оптимальные схемы могут быть синтезированы на основе таблиц истинности показывающих соответствие исходных и преобразованных кодов.

Рассмотрим преобразование двоичного кода в код Грея, у которого переход к соседнему числу сопровождается изменением только в одном разряде. Так, в технике аналого-цифрового преобразования и пересчетных устройствах широко используется код Грея. Он позволяет существенно сократить время преобразования и повысить эффективность защиты от нежелательных сбоев при переходах выходного кода. Недостатком кода Грея является то, что в нем затруднено выполнение арифметических операций и цифрой налоговое преобразование. Поэтому при необходимости код Грея преобразуется в обычный двоичный код. Переход от двоичного кода к коду Грея осуществляется следующим образом: старшие разряды совпадают, а любой следующий разряд Yk кода Грея равен сумме по модулю два соответствующего Хк и предыдущего Хк + 1 разрядов двоичного кода, т.е. Yk = Xk + Xk + 1. При обратном переходе старшие разряды также совпадают, но каждый следующий разряд получается в результате суммирования по модулю два полученного разряда двоичного кода и соответствующего разряда кода Грея, т.е. Хк - 1 = Yk - 1 + Хк.


Дискретные элементы. Сумматоры и мультиплексоры. Назначение и реализация на базовых логических элементах. Увеличение числа входов/выходов.

Сумматор — устройство, преобразующее информационные сигналы (аналоговые или цифровые) в сигнал, эквивалентный сумме этих сигналов.

 Построение двоичных сумматоров обычно начинается с сумматора по модулю 2. На рисунке приведена таблица истинности этого сумматора. Ее можно получить исходя из правил суммирования в двоичной арифметике.

 

В соответствии с принципами построения произвольной таблицы истинности, получим схему сумматора по модулю 2. Эта схема приведена на рисунке.

Сумматор по модулю 2 (для двоичной арифметики его схема совпадает со схемой исключающего "ИЛИ") изображается на схемах как показано на рисунке.

Сумматор по модулю 2 выполняет суммирование без учета переноса. В полном двоичном сумматоре требуется учитывать перенос, поэтому требуются схемы, позволяющие формировать перенос в следующий двоичный разряд. Таблица истинности такой схемы, называемой полусумматором, приведена на рисунке .

В соответствии с принципами построения произвольной таблицы истинности получим схему полусумматора.

Полусумматор изображается на схемах как показано на рисунке.

Схема полусумматора формирует перенос в следующий разряд, но не может учитывать перенос из предыдущего разряда, поэтому она и называется полусумматором. Таблицу истинности полного двоичного одноразрядного сумматора можно получить из правил суммирования двоичных чисел. Она приведена на рисунке. В обозначении входов использовано следующее правило: в качестве входов использованы одноразрядные числа A и B; перенос обозначен буквой P; для обозначения входа переноса используется буква I (сокращение от английского слова input – вход); для обозначения выхода переноса используется буква O (сокращение от английского слова output – выход).

В соответствии с принципами построения принципиальной схемы по произвольной таблице истинности получим схему полного двоичного одноразрядного сумматора. Эта схема приведена на рисунке. Ее можно минимизировать, но это несколько усложняет принципы построения сумматоров, поэтому вопросы минимизации рассматриваться не будут.

Полный двоичный одноразрядный сумматор изображается на схемах как показано на рисунке 9.

Для того чтобы получить многоразрядный сумматор, достаточно соединить входы и выходы переносов соответствующих двоичных разрядов. Схема соединения одноразрядных сумматоров для реализации четырехразрядного сумматора приведена на рисунке 10.

 

Мультиплексор - коммутатор цифровых сигналов. Мультиплексор представляет собой комбинационное устройство с m информационными, n управляющими входами и одним выходом. Функционально мультиплексор состоит из m элементов конъюнкции, выходы которых объединены дизъюнктивно с помощью элемента ИЛИ с m входами. На одни входы всех элементов конъюнкции подаются информационные сигналы, а другие входы этих элементов соединены с соответствующими выходами дешифратора с n входами.

Особенности построения мультиплексоров на ТТЛ элементах

Попробуем заставить работать в качестве электронного ключа уже знакомые нам логические элементы. Рассмотрим таблицу истинности логического элемента "И". При этом один из входов логического элемента "И" будем рассматривать как информационный вход электронного ключа, а другой вход — как управляющий. Так как оба входа логического элемента "И" эквивалентны, то не важно какой из них будет управляющим входом.

Пусть вход X будет управляющим, а Y — информационным. Для простоты рассуждений, разделим таблицу истинности на две части в зависимости от уровня логического сигнала на управляющем входе X.

Ни хера тут не правильная таблица. В графе Out не 11 10, а 00 01

По таблице истинности отчетливо видно, что пока на управляющий вход X подан нулевой логический уровень, сигнал, поданный на вход Y, на выход Out не проходит. При подаче на управляющий вход X логической единицы, сигнал, поступающий на вход Y, появляется на выходе Out.

Это означает, что логический элемент "И" можно использовать в качестве электронного ключа. При этом не важно какой из входов элемента "И" будет использоваться в качестве управляющего входа, а какой — в качестве информационного. Остается только объединить выходы логических элементов "И" в один выход. Это делается при помощи логического элемента "ИЛИ" точно так же как и при построении схемы по произвольной таблице истинности. Получившийся вариант схемы коммутатора с управлением логическими уровнями приведен на рисунке.

В схемах, приведенных на рисунках 1 и 2, можно одновременно включать несколько входов на один выход. Однако обычно это приводит к непредсказуемым последствиям. Кроме того, для управления таким коммутатором требуется много входов, поэтому в состав мультиплексора обычно включают двоичныйдешифратор, как показано на рисунке. Этот дешифратор получен нами ранее при помощи синтеза логических схем (СДНФ). Это позволяет управлять переключением информационных входов при помощи двоичных кодов, подаваемых на управляющие входы. Количество информационных входов в таких схемах выбирают кратным степени числа два.

 

 

Условно-графическое обозначение четырёхвходового мультиплексора с двоичным управлением приведено на рисунке. Входы A0 и A1 являются управляющими входами мультиплексора, определяющими адрес входного сигнала, который будет соединён с выходным выводом мультиплексора Y. Сами входные сигналы обозначены как X0, X1, X2 и X3.

В условно-графическом обозначении названия информационных входов A, B, C и D заменены названиями X0, X1, X2 и X3, а название выхода Out заменено на название Y. Такое название входов и выходов более распространено в отечественной литературе. Адресные входы обозначены как A0 и A1.

 

 


 


Дата добавления: 2018-05-12; просмотров: 431; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!