А. Всасывание железа в кишечнике



Гормоны выполняют в организме следующие функции: -поддерживают гомеостаз; -влияют на скорость химических реакций; -регулируют физиологические функции организма; -регулируют дифференцировку клеток; -регулируют механизмы иммунитета; -регулируют психическую деятельность; -регулируют половое развитие; -регулируют обмен веществ.     а) сложные белки: фолликулостимулирующий гормон (ФСГ), лютеинезирующий гормон (ЛГ), тиреотропный гормон (ТТГ); б) простые белки: инсулин, пролактин, соматотропный гормон (СТГ); в) пептиды: окситоцин, вазопрессии, глюкагон, кальцитонин, кортикотропин; г) производные аминокислот: катехоламины, тиреоидные гор­моны, мелатонин; д) стероидные гормоны: кортикостероиды, половые гормоны, кальцитриол. По биологическому действию гормоны можно разделить на следующие группы: 1) регулирующие обмен белков, жиров и углеводов: инсулин, ад­реналин, глюкагон, глюкокортикоиды, тироксин; 2) регулирующие водно-солевой обмен: минералокортикоиды (аль-достерон), вазопрессин, ангиотензин II; 3) регулирующие обмен кальция и фосфора: кальцитонин, каль­цитриол, паратгормон; 4) регулирующие обмен веществ, связанный с репродуктивной функцией (половые гормоны): эстрогены, андрогены, окситоцин; 5) регулирующие выработку гормонов эндокринных желез: ри-лизинг-факторы (либерины, статины), являющиеся гормонами гипота­ламуса, и тронные гормоны (гормоны гипофиза).   6 Натрий.Обмен натрия тесно связан с обменом калия. Его содержание в организме составляет 0,08% общей массы. Он и создает необходимую реакцию среды для процессов пищеварения в ротовой полости и кишечнике. Натрий поступает в ор­ганизм в основном в виде хлорида натрия. Основная масса натрия сосредотачивается в плазме крови, лимфе, ликворе и других биоло­гических жидкостях в виде хлоридов, гидрокарбонатов, фосфатов и т. д. Богаты натрием кожа, легкие, мозг. Обмен натрия в организме регулируется альдостероном. Натрий- основной катион внеклеточной жидкости (135-155 ммоль/л плазмы крови) - практически не поступает в клетки, и следовательно, определяет осмотическое давление плазмы и интерстициальной жидкости. При потере натрия появляется «осмотически свободная» вода, часть которой может перемещаться в клетки вследствие разницы осмотического давления (осмотический градиент), что приводит к набуханию клеток. Часть воды выводится почками. В конечном счете, то и другое уменьшает объем внеклеточного водного сегмента, в том числе и объем крови. Избыток натрия вызывает задержку дополнительного количества воды, увеличивающего внеклеточное пространство, к формированию отеков. Косвенно ионы натрия участвуют в регуляции кислотно-щелочного состоя­ния через бикарбонат и фосфатную буферную систему. Ионы натрия в известной мере определяют степень нервно-мышечной возбудимости. Ферментативные процессы в митохондриях и ядре могут происходить только при наличии натрия. Одной из самых распространенных систем активного пере­носа является (Na+ + K+) - АТФ-аза, т. е. фермент, активность которого зависит от присутствия в среде ионов Na+ и К+. Эта система локализована в клеточной мембране и обеспечивает выведение из клетки ионов натрия и замену их на ионы калия или такие метаболиты, как аминокислоты, углеводы и др.. Одним из признаков повышенного содержания натрия в организме является хрупкость сосудов, а также гидратация тканей, их отечность. Гипонатриемия возникает при недостатке натрия в рационе, усиленной работе, диабете. К этому приводят обильные вливания глюкозы, большая задержка воды при некоторых заболеваниях почек (нефрит, тубулярный нефроз) или чрезмерно усиленная секреция вазопрессина при острых и хронических заболеваниях мозга. Калий.Его содержание в организме животных достигает 0,22-0,23% общей массы. Калий участвует в поддержании осмоти­ческого давления внутри клетки, передаче нервного импульса, регуляции сокращений сердечной и других мышц, входит в состав бу­ферных систем крови и тканей, поддерживает гидратацию ионов и коллоидных частиц, активирует деятельность многих ферментов (АТФ-азы, пируват- и фруктокиназ и др.), является составной частью натрий-калиевого насоса клетки. Калий в основном сосредоточен в клетках (540-620 мг%), мало его в межклеточной жидкости (15,5-21 мг%). Калий относится к числу внутриклеточных элементов, где одним из его назначений является обеспечение внутриклеточ­ного осмотического давления. В целом ионы К+ повышают скорость аэробного и угнетают анаэробное окисление углеводов. Ионы калия вместе с ионами натрия участвуют в процессе передачи нервного воз­буждения с нерва на иннервируемый орган, а также между нейронами. В природе калия достаточно много и практически недоста­точность его у животных не наблюдается. Обмен калия в организме регулируется минералокортикостероидами коры надпочечников. Гиперкалиемия наблюдается при усиленном распаде тканей, травмах, инфекциях, нарушениях ре­гуляции со стороны надпочечников. При этом угнетаются реакции гликолиза, клеточное дыхание, окислительное фосфорилирование, возбудимость, наступает интоксикация. Кальций.На долю кальция приходится почти треть всех минеральных веществ организма (1,9% общей массы тела). 97% кальция сосредоточено в скелете,где он образует кристаллы гидроксилапатита. Кальций в небольших количествах содержится в плазме крови (10—15 мг %) и клетках, причем часть его находится в ионизированной форме, а другая образует комплексы с белка­ми и мембранными структурами клеток. ВитаминDявляется составной частью белкового переносчика — кальций связующего протеина, Кальций участвует в регуляции порозности эндотелия сосудов, в создании структуры костной ткани, в процессах свертывания кро­ви. Он снижает возбудимость нервной системы, стимулирует де­ятельность сердечной мышцы, понижает проницаемость клеточных мембран, уменьшает способность коллоидов связывать воду, участ­вует в регуляции деятельности многих ферментов.При недостатке в рационе кальция возникает гипокальцемия. Она сопровождается гиперфосфатемией, повышением проницаемости клеточных мембран, остеопорозом, ломкостью и искривлением костей, остеомаляцией, рахитом, судо­рогами. Обмен кальция в организме регулируется паратгормоном и кальцитонином. Фосфор.Фосфор — один из распространенных элементов органического мира. В организме животных встречаются как минеральные (различные фосфорнокислые соли), так и органи­ческие соединения фосфора. Одно из таких веществ — гидроксиапатит — основное минеральное соединение костной ткани. В среднем в костях млекопитающих 30 % золы, в составе ко­торой 36 % кальция, 17 % фосфора и 0,8 % магния. Фосфор костей составляет 70—85 % от общего количества этого эле­мента в организме. В организме животного фосфор является составной частью костей и зубов, компонентом нуклеино­вых кислот, фосфопротеидов и фосфатидов(белки мозга, казеиноген, фосфорилаза, ви­теллин, фосвитин и др.), входит в состав буфер­ных систем и коферментов (НАД, НАДФ, ФАД, ФМН, HS-KoA, пиридоксальфосфат и др.), макроэргических фосфатов (АТФ, ЦТФ, ГТФ, УТФ, креатинфосфат) Обмен фосфора в организме регулируется паратгормоном, час­тично— половыми гормонами. При недостатке фосфора в кор­мах, нарушении соотношения Са :Рили заболеваниях паращитовидной железы возникает рахит, остеомаляция, остеопороз и фиброзный остит. Магний.В организме большая часть магния концентрируется в костях, где его содержание достигает 0,1 %. Самая высокая концентрация магния в дентине зубов — около 0,8 %. Остальные ткани содержат примерно одинаковое количество магния {0,005—0,015%). Магний составляет около 0,05% общей массы жи­вотного. В отличие от кальция он является преиму­щественно внутриклеточным компонентом. В крови находится в виде ио­нов, солей и соединений с альбуминами и глобулинами. Депониру­ется в печени, затем поступает в мышечную и костную ткани. Магний - антагонист кальция. В основном магний сосредоточен в скелете и мягких тка­нях. Магний входит в состав костей и зубов, участвует в функцио­нировании нервно-мышечного аппарата и иммунобиологических процессах, является составной частью и активатором многих фер­ментов (АТФ-азы мышц, АХЭ, фосфатаз), «регулятором» окисли­тельного фосфорилирования и др. Магний обеспечивает сохранность уникальной струк­туры митохондрий и осуществление в них сопряжения окисле­ния с фосфорилированием. При недостатке магния в кормах и воде у животных возникает травяная тетания или гипомагнезия, которая проявляется в мышеч­ном подергивании, замедлении роста, нарушении нервно-мышечной деятельности. Железо.Широко распространенный в природе элемент, имеющий большое биологическое значение. В организме животных железо содержится в сравнительно небольшом количестве – примерно 0,005 % от живой массы. Из этого количества 20-25% железа является резервным, 5-10% входит в состав миоглобина, около 1% содержится в дыхательных ферментах, катализирующих процессы дыхания в клетках и тканях. Данный химический элемент входит в состав более 70 различных ферментов. Почти половина ферментов и кофакторов цикла Кребса либо содержат железо, либо нуждаются в его присутствии. Железосодержащие биомолекулы выполняют четыре основные функции: 1) транспорт электронов (цитохромы, железосеропротеиды); 2) транспорт и депонирование кислорода (гемоглобин, миоглобин, эритрокупреин и т.д.); 3) участие в формировании активных центров окислительно-восстановительных ферментов (оксидазы, гидроксилазы, супероксиддисмутазы и др.); 4) транспорт и депонирование железа (сидерофилины, к которым относятся трансферрин, лактоферрин, ферритин, гемосидерин, сидерохромы). Таким образом, железо активно участвует в составе многочисленных соединений, в различных метаболических процессах, а в некоторых из них играет ключевую роль. Первым и непременным условием поддержания баланса железа в организме на определенном физиологическом уровне является адекватное поступление этого элемента в организм с кормом. На всасывание железа также оказывает влияние гипоксия, снижение запасов железа в организме, активация эритропоэза и болезни желудочно-кишечного тракта. Из желудочно-кишечного тракта всасывается только ионизированное железо, причем лучше всего в виде двухвалентного иона. Всасывание происходит главным образом в тонком кишечнике (особенно в двенадцатиперстной кишке) за счет активного транспорта и, возможно, путем диффузии. Содержащийся в слизистой оболочке кишечника белок апоферритин связывает часть всасывающегося железа, образуя с ним комплекс – ферритин. После прохождения кишечного барьера железо в сыворотке крови вступает в связь с β1-глобулином (трансферрином). В виде комплекса с трансферрином железо поступает к различным тканям, где вновь освобождается. В костном мозге оно включается в построение гемоглобина. В тканевых депо железо находится в связанном состоянии (в виде ферритина и гемосидерина). При разрушении эритроцитов часть гемоглобина распадается с образованием билирубина и гемосидерина, которые также служат резервной формой железа. Выводится железо пищеварительным трактом, почками и потовыми железами. Наиболее часто встречается дефицит железа. При дефиците железа у молодняка отмечается снижение уровня гемоглобина и активности железосодержащих ферментов, количества эритроцитов, РНК в лимфоцитах, а также гамма-глобулиновой фракции белка в сыворотке крови. Поэтому при недостатке железа нарушается дыхательная функция крови, что ведет к кислородному голоданию тканей, снижению энергии роста и устойчивости животных к другим заболеваниям.   7 Медьнеобходима для нормального протекания многих физиологических процессов: кроветворения, пигментации,остеогенеза, воспроизводительной функции и т.д. Ионы меди влияют на течение жирового, углеводного, белкового и минерального обмена. Важнейшая функция меди в организме состоит в том, что она является катализатором при образовании гемоглобина крови, хотя сама и не входит в его состав. Данный элемент повышает всасывание железа в кишечнике и использование его запасов в тканях, способствует поступлению железа в костный мозг, где они совместно принимают участие в созревании эритроцитов. Медь оказывает влияние на углеводный обмен, ускоряет окисление глюкозы, задерживает распад гликогена и способствует его накоплению в печени. Она необходима также для синтеза йодированных соединений щитовидной железы. Известно, что медь принимает активное участие в промежуточном обмене веществ. Свое биологическое действие медь проявляет посредством связи с белками, образуя комплексы, обладающие высокой биологической активностью, при этом часть меди связывается с L – глобулинами и образует церулоплазмин, в котором содержится около 90 % этого элемента и он является основным её депо. Церулоплазмин проявляет себя в организме и как фермент, и как антиоксидант. Способность церулоплазмина катализировать окисление катехоламинов привела к утверждению, что этот белок может регулировать уровень в крови гормонов мозговой доли надпочечников. Многие медьсодержащие белки обладают ферментативной функцией и играют важную роль в окислительно-восстановительных процессах, катализируя отдельные этапы тканевого дыхания. Например, цитохромоксидаза (белок, содержащий 0,09 % меди) катализирует завершающий этап тканевого дыхания – окисление восстановленного цитохрома С кислородом воздуха. При недостаточном поступлении меди в организм или же «вытеснение» её из биогенных активных соединений антагонистами (Zn, Mo, S, Cd) развивается заболевание – гипокупроз. Несмотря на то, что медь относится к микроэлементам, в больших количествах она может выступать и как тяжелый металл. В высоких концентрациях медь подавляет активность многих ферментов, вызывает гемолиз эритроцитов, гемоглобинурию. При хроническом токсикозе – цирроз печени. Цинк.Биологическая роль цинка, в первую очередь, связана с функцией ферментов. Известно, что он является незаменимым металлокомпонентом более 80 ферментов, среди которых важнейшими являются лактатдегидрогеназа, глутаматдегидрогеназа, ДНК- и РНК- полимеразы, карбоксипептидаза. Входя в структуру дегидрогеназ, цинк принимает участие в окислительно-восстановительных процессах клеток и тканей организма. В составе ДНК- и РНК-полимераз, микроэлемент имеет значение в реализации генетической информации при биосинтезе белка. Цинк входит в состав некоторых гормонов (инсулин, кортикотропный гормон). Оказывает гипогликемическое действие, что объясняется не столько стабилизирующим влиянием цинка на инсулин, сколько инактивирующим его воздействием на фермент инсулиназу, положительно влияет на оссификацию, а также на образование соляной кислоты и молочную продуктивность. Цинк воздействует на половую функцию, повышая генезис половых клеток, оказывает стабилизирующее действие на мембраны клеток в результате образования стабильных цинкпротеидных комплексов. Наряду с витамином В6цинк играет важную роль для обеспечения оптимального функционирования вилочковой железы, которая нужна для иммунной системы организма. Таким образом, с наличием данного элемента в организме, связаны процессы клеточного дыхания, обмен белков, нуклеиновых кислот, липидов, углеводов, плодовитость, иммунитет, а также энергетический обмен. Селенявляется мощным антиоксидантом. Он контролирует окислительно-восстановительные процессы на клеточном уровне (обмен глюкозы, цикл Кребса, калиево-натриево-кальциевый обмен и др.), связан с функцией более 100 ферментов, участвующих в детоксикации продуктов метаболизма, регулирует окисление жирных кислот, участвует в синтезе важнейших гормонов. Так под влиянием селена активность адреналина понижается, инсулина – повышается. Это приводит к появлению гипогликемического эффекта: в крови уменьшается количество сахара, а в мышцах увеличивается содержание гликогена. Селен способен вытеснять серу и образовывать селен-гемоглобин, вызывая при этом гипохромную анемию. Данный микроэлемент регулирует усвоение и расход витаминов Е, А, С и К в организме животных, замедляет процесс старения, обладает цитопротективными свойствами, участвует в регуляции эластичности тканей, способствует задержке распространения в организме вирусов и развитию вторичных инфекций у больных. Он входит в состав глутатионпероксидазы. Глутатионпероксидаза защищает внутриклеточные структуры от повреждающего действия свободных кислородных радикалов, которые образуются как при обмене веществ, так и под влиянием внешних факторов, в том числе и ионизирующего излучения: В настоящее время селен рассматривают как один из перспективных антиканцерогенных факторов. Также имеется информация об участии селена в иммунных реакциях в составе селенопротеинов, обмене тиреоидных гормонов, что позволяет использовать препараты этого микроэлемента в качестве иммуностимуляторов. Механизм иммуномодулирующего воздействия связан с защитными антиоксидантными свойствами по отношению к полиненасыщенным жирным кислотам мембран иммунокомпетентных клеток. Особенность обмена селена состоит в том, что он всасывается на протяжении всего пищеварительного канала. Около 79 % селена поглощается эритроцитами, а остальное его количество депонируется клетками почек, печени и других тканей. Изменения, происходящие в организме животных на фоне дефицита селена, с патологоанатомической и клинической точек зрения напоминают гипо- и авитаминоз Е. Нарушение обмена веществ, проявляется уменьшением в сыворотки крови общего кальция, увеличением неорганического фосфора, дистрофией печени, сердца, почек, селезенки и других паренхиматозных органов. Йод, активно влияя на обмен веществ и усиливая процессы диссимиляции, необходим для эндогенного синтеза гормонов щитовидной железы, а также для обеспечения нормального морфофункционального состояния щитовидной железы. При поступлении йодидов в клетки эпителия фолликула щитовидной железы йодид-ионы под влиянием фермента йодид-пероксидазы окисляются с образованием элементарного йода, который включается в молекулу тирозина.. Известно также влияние йода на липидный, белковый и углеводный обмен и воспроизводительную функцию животных. Йод всасывается в тонком кишечнике, причем йод и йодиты предварительно превращаются в йодиды, а затем поступают в кровь. Выводится в основном элемент почками (до 80%) Недостаток йода в организме животных возникает вследствие низкого содержание его в почве (менее 0,0001 %) и питьевой воде (менее 10 мкг/л) или избытка его антагонистов – кальция, марганца и серы в рационе животных. При йодной недостаточности нарушается синтез тироксина. Это ведет к компенсаторному усилению функции и увеличению объема щитовидной железы, её патологическим изменениям (фолликулы трансформируются, развивается кистозное перерождение органа). Характерный признак йодной недостаточности – увеличение щитовидной железы («зоб»). Фтор.В организме животных данный микроэлемент составляет 0,009% от общей массы. Участвует в образовании опорных тканей, особенно костной, и зубов. Оказывает действие на активность многих ферментов и на обмен веществ в целом. В организм животных поступает больше с водой, чем с кормами. Быстро поглощается вначале щитовидной железой, затем почками и надпочечниками. В дальнейшем концентрируется в эмали зубов, дентине, диафизах и эпифизах костей, селезенке, волосах и шерсти. С возрастом содержание фтора в организме возрастает. Основная масса фтора депонируется в костях. Дефицит фтора в воде приводит к нарушению обмена веществ в организме и возникновению кариеса. Важную роль играет и дефицит в рационах переваримого протеина, фосфора, цинка, молибдена, кобальта и избыток кальция. Избыток фтора приводит к заболеванию флюороз, при котором развиваются патологические процессы в костях, особенно в зубах. Появляется крапчатость (пятнистость) эмали, зубы разрушаются и выпадают. Развиваются симптомы остеомаляции, остеопороза, остеолиза, так как фтор взаимодействует с ионами кальция, магния и фосфора, что приводит к нарушению минерального обмена (выраженнаягипокальцемия). Он угнетает активность ферментов, является биологическим конкурентом йода. При длительном поступлении фтора в больших дозах уменьшается воспроизводительная функция животных и проявляется гонадотоксический, эмбриотоксический эффект. Доказано иммунодепрессивное действие фтора. Хромактивирует фосфоглюкомутазу, трипсин, гликогенсинтетазу и образует комплексы с РНК. В связи с этим считают, что хром стимулирует биосинтез гликогена и белка, а также нормализует липидный обмен. Биологическую активность для животных проявляет только трёхвалентный хром. Он способствует поддержанию уровня сахара в крови, профилактике атеросклероза и сердечнососудистых нарушений, снижает уровень содержания в крови холестерина.     12 ОЖСС (общая железосвязывающая способность сыворотки) — это показатель, характеризующий способность крови переносить железо — один из важнейших для человеческого организма элементов. ОЖСС или общая железосвязывающая способность сыворотки крови — это показатель содержания железа в вашем организме. Транспортировкой этого элемента является трансферрин, ОЖСС является одним из тестов, помогающих определить его содержание. Повышенная концентрация говорит о дефиците железа, пониженная концентрация — наоборот.По другому его называют коэффициентом насыщения железом белка трансферрина.   Латентная (ненасыщенная) железосвязывающая способность сыворотки крови (ЛЖСС) отражает способность сыворотки крови связывать железо. Всё железо в организме человека можно разделить на внеклеточное, клеточное и железо запасов. Внеклеточное – это свободное железо сыворотки крови и связывающие железо белки (трансферрин), клеточное входит в состав гемоглобина, миоглобина, ферментов (пероксидазы, каталазы, цитохромов), а железо запасов – это гемосидерин и ферритин, которые накапливаются в печени, селезёнке. Трансферрин, который переносит железо, имеет два пространства для связывания железа в одной молекуле, то есть одна молекула белка-переносчика одновременно может переносить два иона железа. Однако в обычном состоянии трансферрин «заполнен» железом лишь на 30 %. Латентная железосвязывающая способность сыворотки: отражает резервные возможности трансферрина, показывает, сколько трансферрина свободно для связывания железа, характеризует, насколько трансферрин «не насыщен» железом. Показатель вычисляют на основании двух параметров: сывороточного железа и общей железосвязывающей способности сыворотки крови (ОЖСС), которая характеризует максимально возможное заполнение трансферрина железом. Формула расчёта: ЛЖСС = ОЖСС – сывороточное железо. Железосвязывающая способность сыворотки изменяется в зависимости от содержания железа в организме. При железодефицитной анемии, когда уровень железа снижается, содержание трансферрина увеличивается. «Незанятый» железом трансферрин – это и есть ЛЖСС, следовательно, ЛЖСС и ОЖСС увеличиваются. При избыточном поступлении железа в организм оба металлосвязывающих пространства в трансферрине заполняются железом, он не может присоединить ещё больше ионов железа, поэтому ЛЖСС снижается. Низкие показатели сывороточного железа и низкая ЛЖСС характерны для анемий, возникших на фоне злокачественных опухолей, на фоне хронических заболеваний   Сывороточное железо - термин означающий уровень железа, связанного с белком трансферином в сыворотке кров   Отношение связанного в трансферрине железа (сывороточное железо) к показателю общей железосвязывающей способности (ОЖСС) представляет собой коэффициент (процент) насыщения трансферрина железом.   12Вгемсодержащих белках железо находится в составе гема. В негемовых железосодержащих белках железо непосредственно связывается с белком. К таким белкам относят трансферрин, ферритин, окислительные ферменты рибонук-леотидредуктазу и ксантиноксидазу, железофлавопротеины NADH-дегидрогеназа и сукцинат-дегидрогеназа. В организме взрослого человека содержится 3 - 4 г железа, из которых только около 3,5 мг находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферритин - 27%, миоглобин - 4%, трансферрин - 0,1%, На долю всех содержащих железо ферментов приходится всего 0,6% железа, имеющегося в организме. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки. В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe3+, образуя крупные, легко агрегирующие комплексы с ОН-, другими анионами и водой. При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.

А. Всасывание железа в кишечнике

В пище железо в основном находится в окисленном состоянии (Fe3+) и входит в состав белков или солей органических кислот. Освобождениюжелеза из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe2+. В суточном количестве пищи обычно содержится 15 - 20 мг железа, а всасывается только около 10% этого количества. Организм взрослого человека теряет около 1 мг железа в сутки.

Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин "улавливает" железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается (см. ниже "Регуляция поступления железа в клетки"). Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.железо, поступающее из энтероцитов в кровь, транспортирует белок плазмы крови трансферрин (рис. 13-7).


Дата добавления: 2018-05-12; просмотров: 578; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!