А. Всасывание железа в кишечнике
Гормоны выполняют в организме следующие функции: -поддерживают гомеостаз; -влияют на скорость химических реакций; -регулируют физиологические функции организма; -регулируют дифференцировку клеток; -регулируют механизмы иммунитета; -регулируют психическую деятельность; -регулируют половое развитие; -регулируют обмен веществ. а) сложные белки: фолликулостимулирующий гормон (ФСГ), лютеинезирующий гормон (ЛГ), тиреотропный гормон (ТТГ); б) простые белки: инсулин, пролактин, соматотропный гормон (СТГ); в) пептиды: окситоцин, вазопрессии, глюкагон, кальцитонин, кортикотропин; г) производные аминокислот: катехоламины, тиреоидные гормоны, мелатонин; д) стероидные гормоны: кортикостероиды, половые гормоны, кальцитриол. По биологическому действию гормоны можно разделить на следующие группы: 1) регулирующие обмен белков, жиров и углеводов: инсулин, адреналин, глюкагон, глюкокортикоиды, тироксин; 2) регулирующие водно-солевой обмен: минералокортикоиды (аль-достерон), вазопрессин, ангиотензин II; 3) регулирующие обмен кальция и фосфора: кальцитонин, кальцитриол, паратгормон; 4) регулирующие обмен веществ, связанный с репродуктивной функцией (половые гормоны): эстрогены, андрогены, окситоцин; 5) регулирующие выработку гормонов эндокринных желез: ри-лизинг-факторы (либерины, статины), являющиеся гормонами гипоталамуса, и тронные гормоны (гормоны гипофиза). 6 Натрий.Обмен натрия тесно связан с обменом калия. Его содержание в организме составляет 0,08% общей массы. Он и создает необходимую реакцию среды для процессов пищеварения в ротовой полости и кишечнике. Натрий поступает в организм в основном в виде хлорида натрия. Основная масса натрия сосредотачивается в плазме крови, лимфе, ликворе и других биологических жидкостях в виде хлоридов, гидрокарбонатов, фосфатов и т. д. Богаты натрием кожа, легкие, мозг. Обмен натрия в организме регулируется альдостероном. Натрий- основной катион внеклеточной жидкости (135-155 ммоль/л плазмы крови) - практически не поступает в клетки, и следовательно, определяет осмотическое давление плазмы и интерстициальной жидкости. При потере натрия появляется «осмотически свободная» вода, часть которой может перемещаться в клетки вследствие разницы осмотического давления (осмотический градиент), что приводит к набуханию клеток. Часть воды выводится почками. В конечном счете, то и другое уменьшает объем внеклеточного водного сегмента, в том числе и объем крови. Избыток натрия вызывает задержку дополнительного количества воды, увеличивающего внеклеточное пространство, к формированию отеков. Косвенно ионы натрия участвуют в регуляции кислотно-щелочного состояния через бикарбонат и фосфатную буферную систему. Ионы натрия в известной мере определяют степень нервно-мышечной возбудимости. Ферментативные процессы в митохондриях и ядре могут происходить только при наличии натрия. Одной из самых распространенных систем активного переноса является (Na+ + K+) - АТФ-аза, т. е. фермент, активность которого зависит от присутствия в среде ионов Na+ и К+. Эта система локализована в клеточной мембране и обеспечивает выведение из клетки ионов натрия и замену их на ионы калия или такие метаболиты, как аминокислоты, углеводы и др.. Одним из признаков повышенного содержания натрия в организме является хрупкость сосудов, а также гидратация тканей, их отечность. Гипонатриемия возникает при недостатке натрия в рационе, усиленной работе, диабете. К этому приводят обильные вливания глюкозы, большая задержка воды при некоторых заболеваниях почек (нефрит, тубулярный нефроз) или чрезмерно усиленная секреция вазопрессина при острых и хронических заболеваниях мозга. Калий.Его содержание в организме животных достигает 0,22-0,23% общей массы. Калий участвует в поддержании осмотического давления внутри клетки, передаче нервного импульса, регуляции сокращений сердечной и других мышц, входит в состав буферных систем крови и тканей, поддерживает гидратацию ионов и коллоидных частиц, активирует деятельность многих ферментов (АТФ-азы, пируват- и фруктокиназ и др.), является составной частью натрий-калиевого насоса клетки. Калий в основном сосредоточен в клетках (540-620 мг%), мало его в межклеточной жидкости (15,5-21 мг%). Калий относится к числу внутриклеточных элементов, где одним из его назначений является обеспечение внутриклеточного осмотического давления. В целом ионы К+ повышают скорость аэробного и угнетают анаэробное окисление углеводов. Ионы калия вместе с ионами натрия участвуют в процессе передачи нервного возбуждения с нерва на иннервируемый орган, а также между нейронами. В природе калия достаточно много и практически недостаточность его у животных не наблюдается. Обмен калия в организме регулируется минералокортикостероидами коры надпочечников. Гиперкалиемия наблюдается при усиленном распаде тканей, травмах, инфекциях, нарушениях регуляции со стороны надпочечников. При этом угнетаются реакции гликолиза, клеточное дыхание, окислительное фосфорилирование, возбудимость, наступает интоксикация. Кальций.На долю кальция приходится почти треть всех минеральных веществ организма (1,9% общей массы тела). 97% кальция сосредоточено в скелете,где он образует кристаллы гидроксилапатита. Кальций в небольших количествах содержится в плазме крови (10—15 мг %) и клетках, причем часть его находится в ионизированной форме, а другая образует комплексы с белками и мембранными структурами клеток. ВитаминDявляется составной частью белкового переносчика — кальций связующего протеина, Кальций участвует в регуляции порозности эндотелия сосудов, в создании структуры костной ткани, в процессах свертывания крови. Он снижает возбудимость нервной системы, стимулирует деятельность сердечной мышцы, понижает проницаемость клеточных мембран, уменьшает способность коллоидов связывать воду, участвует в регуляции деятельности многих ферментов.При недостатке в рационе кальция возникает гипокальцемия. Она сопровождается гиперфосфатемией, повышением проницаемости клеточных мембран, остеопорозом, ломкостью и искривлением костей, остеомаляцией, рахитом, судорогами. Обмен кальция в организме регулируется паратгормоном и кальцитонином. Фосфор.Фосфор — один из распространенных элементов органического мира. В организме животных встречаются как минеральные (различные фосфорнокислые соли), так и органические соединения фосфора. Одно из таких веществ — гидроксиапатит — основное минеральное соединение костной ткани. В среднем в костях млекопитающих 30 % золы, в составе которой 36 % кальция, 17 % фосфора и 0,8 % магния. Фосфор костей составляет 70—85 % от общего количества этого элемента в организме. В организме животного фосфор является составной частью костей и зубов, компонентом нуклеиновых кислот, фосфопротеидов и фосфатидов(белки мозга, казеиноген, фосфорилаза, вителлин, фосвитин и др.), входит в состав буферных систем и коферментов (НАД, НАДФ, ФАД, ФМН, HS-KoA, пиридоксальфосфат и др.), макроэргических фосфатов (АТФ, ЦТФ, ГТФ, УТФ, креатинфосфат) Обмен фосфора в организме регулируется паратгормоном, частично— половыми гормонами. При недостатке фосфора в кормах, нарушении соотношения Са :Рили заболеваниях паращитовидной железы возникает рахит, остеомаляция, остеопороз и фиброзный остит. Магний.В организме большая часть магния концентрируется в костях, где его содержание достигает 0,1 %. Самая высокая концентрация магния в дентине зубов — около 0,8 %. Остальные ткани содержат примерно одинаковое количество магния {0,005—0,015%). Магний составляет около 0,05% общей массы животного. В отличие от кальция он является преимущественно внутриклеточным компонентом. В крови находится в виде ионов, солей и соединений с альбуминами и глобулинами. Депонируется в печени, затем поступает в мышечную и костную ткани. Магний - антагонист кальция. В основном магний сосредоточен в скелете и мягких тканях. Магний входит в состав костей и зубов, участвует в функционировании нервно-мышечного аппарата и иммунобиологических процессах, является составной частью и активатором многих ферментов (АТФ-азы мышц, АХЭ, фосфатаз), «регулятором» окислительного фосфорилирования и др. Магний обеспечивает сохранность уникальной структуры митохондрий и осуществление в них сопряжения окисления с фосфорилированием. При недостатке магния в кормах и воде у животных возникает травяная тетания или гипомагнезия, которая проявляется в мышечном подергивании, замедлении роста, нарушении нервно-мышечной деятельности. Железо.Широко распространенный в природе элемент, имеющий большое биологическое значение. В организме животных железо содержится в сравнительно небольшом количестве – примерно 0,005 % от живой массы. Из этого количества 20-25% железа является резервным, 5-10% входит в состав миоглобина, около 1% содержится в дыхательных ферментах, катализирующих процессы дыхания в клетках и тканях. Данный химический элемент входит в состав более 70 различных ферментов. Почти половина ферментов и кофакторов цикла Кребса либо содержат железо, либо нуждаются в его присутствии. Железосодержащие биомолекулы выполняют четыре основные функции: 1) транспорт электронов (цитохромы, железосеропротеиды); 2) транспорт и депонирование кислорода (гемоглобин, миоглобин, эритрокупреин и т.д.); 3) участие в формировании активных центров окислительно-восстановительных ферментов (оксидазы, гидроксилазы, супероксиддисмутазы и др.); 4) транспорт и депонирование железа (сидерофилины, к которым относятся трансферрин, лактоферрин, ферритин, гемосидерин, сидерохромы). Таким образом, железо активно участвует в составе многочисленных соединений, в различных метаболических процессах, а в некоторых из них играет ключевую роль. Первым и непременным условием поддержания баланса железа в организме на определенном физиологическом уровне является адекватное поступление этого элемента в организм с кормом. На всасывание железа также оказывает влияние гипоксия, снижение запасов железа в организме, активация эритропоэза и болезни желудочно-кишечного тракта. Из желудочно-кишечного тракта всасывается только ионизированное железо, причем лучше всего в виде двухвалентного иона. Всасывание происходит главным образом в тонком кишечнике (особенно в двенадцатиперстной кишке) за счет активного транспорта и, возможно, путем диффузии. Содержащийся в слизистой оболочке кишечника белок апоферритин связывает часть всасывающегося железа, образуя с ним комплекс – ферритин. После прохождения кишечного барьера железо в сыворотке крови вступает в связь с β1-глобулином (трансферрином). В виде комплекса с трансферрином железо поступает к различным тканям, где вновь освобождается. В костном мозге оно включается в построение гемоглобина. В тканевых депо железо находится в связанном состоянии (в виде ферритина и гемосидерина). При разрушении эритроцитов часть гемоглобина распадается с образованием билирубина и гемосидерина, которые также служат резервной формой железа. Выводится железо пищеварительным трактом, почками и потовыми железами. Наиболее часто встречается дефицит железа. При дефиците железа у молодняка отмечается снижение уровня гемоглобина и активности железосодержащих ферментов, количества эритроцитов, РНК в лимфоцитах, а также гамма-глобулиновой фракции белка в сыворотке крови. Поэтому при недостатке железа нарушается дыхательная функция крови, что ведет к кислородному голоданию тканей, снижению энергии роста и устойчивости животных к другим заболеваниям. 7 Медьнеобходима для нормального протекания многих физиологических процессов: кроветворения, пигментации,остеогенеза, воспроизводительной функции и т.д. Ионы меди влияют на течение жирового, углеводного, белкового и минерального обмена. Важнейшая функция меди в организме состоит в том, что она является катализатором при образовании гемоглобина крови, хотя сама и не входит в его состав. Данный элемент повышает всасывание железа в кишечнике и использование его запасов в тканях, способствует поступлению железа в костный мозг, где они совместно принимают участие в созревании эритроцитов. Медь оказывает влияние на углеводный обмен, ускоряет окисление глюкозы, задерживает распад гликогена и способствует его накоплению в печени. Она необходима также для синтеза йодированных соединений щитовидной железы. Известно, что медь принимает активное участие в промежуточном обмене веществ. Свое биологическое действие медь проявляет посредством связи с белками, образуя комплексы, обладающие высокой биологической активностью, при этом часть меди связывается с L – глобулинами и образует церулоплазмин, в котором содержится около 90 % этого элемента и он является основным её депо. Церулоплазмин проявляет себя в организме и как фермент, и как антиоксидант. Способность церулоплазмина катализировать окисление катехоламинов привела к утверждению, что этот белок может регулировать уровень в крови гормонов мозговой доли надпочечников. Многие медьсодержащие белки обладают ферментативной функцией и играют важную роль в окислительно-восстановительных процессах, катализируя отдельные этапы тканевого дыхания. Например, цитохромоксидаза (белок, содержащий 0,09 % меди) катализирует завершающий этап тканевого дыхания – окисление восстановленного цитохрома С кислородом воздуха. При недостаточном поступлении меди в организм или же «вытеснение» её из биогенных активных соединений антагонистами (Zn, Mo, S, Cd) развивается заболевание – гипокупроз. Несмотря на то, что медь относится к микроэлементам, в больших количествах она может выступать и как тяжелый металл. В высоких концентрациях медь подавляет активность многих ферментов, вызывает гемолиз эритроцитов, гемоглобинурию. При хроническом токсикозе – цирроз печени. Цинк.Биологическая роль цинка, в первую очередь, связана с функцией ферментов. Известно, что он является незаменимым металлокомпонентом более 80 ферментов, среди которых важнейшими являются лактатдегидрогеназа, глутаматдегидрогеназа, ДНК- и РНК- полимеразы, карбоксипептидаза. Входя в структуру дегидрогеназ, цинк принимает участие в окислительно-восстановительных процессах клеток и тканей организма. В составе ДНК- и РНК-полимераз, микроэлемент имеет значение в реализации генетической информации при биосинтезе белка. Цинк входит в состав некоторых гормонов (инсулин, кортикотропный гормон). Оказывает гипогликемическое действие, что объясняется не столько стабилизирующим влиянием цинка на инсулин, сколько инактивирующим его воздействием на фермент инсулиназу, положительно влияет на оссификацию, а также на образование соляной кислоты и молочную продуктивность. Цинк воздействует на половую функцию, повышая генезис половых клеток, оказывает стабилизирующее действие на мембраны клеток в результате образования стабильных цинкпротеидных комплексов. Наряду с витамином В6цинк играет важную роль для обеспечения оптимального функционирования вилочковой железы, которая нужна для иммунной системы организма. Таким образом, с наличием данного элемента в организме, связаны процессы клеточного дыхания, обмен белков, нуклеиновых кислот, липидов, углеводов, плодовитость, иммунитет, а также энергетический обмен. Селенявляется мощным антиоксидантом. Он контролирует окислительно-восстановительные процессы на клеточном уровне (обмен глюкозы, цикл Кребса, калиево-натриево-кальциевый обмен и др.), связан с функцией более 100 ферментов, участвующих в детоксикации продуктов метаболизма, регулирует окисление жирных кислот, участвует в синтезе важнейших гормонов. Так под влиянием селена активность адреналина понижается, инсулина – повышается. Это приводит к появлению гипогликемического эффекта: в крови уменьшается количество сахара, а в мышцах увеличивается содержание гликогена. Селен способен вытеснять серу и образовывать селен-гемоглобин, вызывая при этом гипохромную анемию. Данный микроэлемент регулирует усвоение и расход витаминов Е, А, С и К в организме животных, замедляет процесс старения, обладает цитопротективными свойствами, участвует в регуляции эластичности тканей, способствует задержке распространения в организме вирусов и развитию вторичных инфекций у больных. Он входит в состав глутатионпероксидазы. Глутатионпероксидаза защищает внутриклеточные структуры от повреждающего действия свободных кислородных радикалов, которые образуются как при обмене веществ, так и под влиянием внешних факторов, в том числе и ионизирующего излучения: В настоящее время селен рассматривают как один из перспективных антиканцерогенных факторов. Также имеется информация об участии селена в иммунных реакциях в составе селенопротеинов, обмене тиреоидных гормонов, что позволяет использовать препараты этого микроэлемента в качестве иммуностимуляторов. Механизм иммуномодулирующего воздействия связан с защитными антиоксидантными свойствами по отношению к полиненасыщенным жирным кислотам мембран иммунокомпетентных клеток. Особенность обмена селена состоит в том, что он всасывается на протяжении всего пищеварительного канала. Около 79 % селена поглощается эритроцитами, а остальное его количество депонируется клетками почек, печени и других тканей. Изменения, происходящие в организме животных на фоне дефицита селена, с патологоанатомической и клинической точек зрения напоминают гипо- и авитаминоз Е. Нарушение обмена веществ, проявляется уменьшением в сыворотки крови общего кальция, увеличением неорганического фосфора, дистрофией печени, сердца, почек, селезенки и других паренхиматозных органов. Йод, активно влияя на обмен веществ и усиливая процессы диссимиляции, необходим для эндогенного синтеза гормонов щитовидной железы, а также для обеспечения нормального морфофункционального состояния щитовидной железы. При поступлении йодидов в клетки эпителия фолликула щитовидной железы йодид-ионы под влиянием фермента йодид-пероксидазы окисляются с образованием элементарного йода, который включается в молекулу тирозина.. Известно также влияние йода на липидный, белковый и углеводный обмен и воспроизводительную функцию животных. Йод всасывается в тонком кишечнике, причем йод и йодиты предварительно превращаются в йодиды, а затем поступают в кровь. Выводится в основном элемент почками (до 80%) Недостаток йода в организме животных возникает вследствие низкого содержание его в почве (менее 0,0001 %) и питьевой воде (менее 10 мкг/л) или избытка его антагонистов – кальция, марганца и серы в рационе животных. При йодной недостаточности нарушается синтез тироксина. Это ведет к компенсаторному усилению функции и увеличению объема щитовидной железы, её патологическим изменениям (фолликулы трансформируются, развивается кистозное перерождение органа). Характерный признак йодной недостаточности – увеличение щитовидной железы («зоб»). Фтор.В организме животных данный микроэлемент составляет 0,009% от общей массы. Участвует в образовании опорных тканей, особенно костной, и зубов. Оказывает действие на активность многих ферментов и на обмен веществ в целом. В организм животных поступает больше с водой, чем с кормами. Быстро поглощается вначале щитовидной железой, затем почками и надпочечниками. В дальнейшем концентрируется в эмали зубов, дентине, диафизах и эпифизах костей, селезенке, волосах и шерсти. С возрастом содержание фтора в организме возрастает. Основная масса фтора депонируется в костях. Дефицит фтора в воде приводит к нарушению обмена веществ в организме и возникновению кариеса. Важную роль играет и дефицит в рационах переваримого протеина, фосфора, цинка, молибдена, кобальта и избыток кальция. Избыток фтора приводит к заболеванию флюороз, при котором развиваются патологические процессы в костях, особенно в зубах. Появляется крапчатость (пятнистость) эмали, зубы разрушаются и выпадают. Развиваются симптомы остеомаляции, остеопороза, остеолиза, так как фтор взаимодействует с ионами кальция, магния и фосфора, что приводит к нарушению минерального обмена (выраженнаягипокальцемия). Он угнетает активность ферментов, является биологическим конкурентом йода. При длительном поступлении фтора в больших дозах уменьшается воспроизводительная функция животных и проявляется гонадотоксический, эмбриотоксический эффект. Доказано иммунодепрессивное действие фтора. Хромактивирует фосфоглюкомутазу, трипсин, гликогенсинтетазу и образует комплексы с РНК. В связи с этим считают, что хром стимулирует биосинтез гликогена и белка, а также нормализует липидный обмен. Биологическую активность для животных проявляет только трёхвалентный хром. Он способствует поддержанию уровня сахара в крови, профилактике атеросклероза и сердечнососудистых нарушений, снижает уровень содержания в крови холестерина. 12 ОЖСС (общая железосвязывающая способность сыворотки) — это показатель, характеризующий способность крови переносить железо — один из важнейших для человеческого организма элементов. ОЖСС или общая железосвязывающая способность сыворотки крови — это показатель содержания железа в вашем организме. Транспортировкой этого элемента является трансферрин, ОЖСС является одним из тестов, помогающих определить его содержание. Повышенная концентрация говорит о дефиците железа, пониженная концентрация — наоборот.По другому его называют коэффициентом насыщения железом белка трансферрина. Латентная (ненасыщенная) железосвязывающая способность сыворотки крови (ЛЖСС) отражает способность сыворотки крови связывать железо. Всё железо в организме человека можно разделить на внеклеточное, клеточное и железо запасов. Внеклеточное – это свободное железо сыворотки крови и связывающие железо белки (трансферрин), клеточное входит в состав гемоглобина, миоглобина, ферментов (пероксидазы, каталазы, цитохромов), а железо запасов – это гемосидерин и ферритин, которые накапливаются в печени, селезёнке. Трансферрин, который переносит железо, имеет два пространства для связывания железа в одной молекуле, то есть одна молекула белка-переносчика одновременно может переносить два иона железа. Однако в обычном состоянии трансферрин «заполнен» железом лишь на 30 %. Латентная железосвязывающая способность сыворотки: отражает резервные возможности трансферрина, показывает, сколько трансферрина свободно для связывания железа, характеризует, насколько трансферрин «не насыщен» железом. Показатель вычисляют на основании двух параметров: сывороточного железа и общей железосвязывающей способности сыворотки крови (ОЖСС), которая характеризует максимально возможное заполнение трансферрина железом. Формула расчёта: ЛЖСС = ОЖСС – сывороточное железо. Железосвязывающая способность сыворотки изменяется в зависимости от содержания железа в организме. При железодефицитной анемии, когда уровень железа снижается, содержание трансферрина увеличивается. «Незанятый» железом трансферрин – это и есть ЛЖСС, следовательно, ЛЖСС и ОЖСС увеличиваются. При избыточном поступлении железа в организм оба металлосвязывающих пространства в трансферрине заполняются железом, он не может присоединить ещё больше ионов железа, поэтому ЛЖСС снижается. Низкие показатели сывороточного железа и низкая ЛЖСС характерны для анемий, возникших на фоне злокачественных опухолей, на фоне хронических заболеваний Сывороточное железо - термин означающий уровень железа, связанного с белком трансферином в сыворотке кров Отношение связанного в трансферрине железа (сывороточное железо) к показателю общей железосвязывающей способности (ОЖСС) представляет собой коэффициент (процент) насыщения трансферрина железом. 12Вгемсодержащих белках железо находится в составе гема. В негемовых железосодержащих белках железо непосредственно связывается с белком. К таким белкам относят трансферрин, ферритин, окислительные ферменты рибонук-леотидредуктазу и ксантиноксидазу, железофлавопротеины NADH-дегидрогеназа и сукцинат-дегидрогеназа. В организме взрослого человека содержится 3 - 4 г железа, из которых только около 3,5 мг находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферритин - 27%, миоглобин - 4%, трансферрин - 0,1%, На долю всех содержащих железо ферментов приходится всего 0,6% железа, имеющегося в организме. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки. В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe3+, образуя крупные, легко агрегирующие комплексы с ОН-, другими анионами и водой. При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.
|
|
|
|
|
|
|
|
А. Всасывание железа в кишечнике
В пище железо в основном находится в окисленном состоянии (Fe3+) и входит в состав белков или солей органических кислот. Освобождениюжелеза из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe2+. В суточном количестве пищи обычно содержится 15 - 20 мг железа, а всасывается только около 10% этого количества. Организм взрослого человека теряет около 1 мг железа в сутки.
Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин "улавливает" железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается (см. ниже "Регуляция поступления железа в клетки"). Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.железо, поступающее из энтероцитов в кровь, транспортирует белок плазмы крови трансферрин (рис. 13-7).
Дата добавления: 2018-05-12; просмотров: 578; Мы поможем в написании вашей работы! |

Мы поможем в написании ваших работ!