Типы электротехнических сталей.



Краткие теоретические сведения и требования к электротехническим сталям

 

Краткие теоретические сведения

 

Основная особенность ферромагнитных веществ заключается в том, что они состоят из областей самопроизвольного намагничивания (доменов), намагниченных до насыщения. В образце, находящемся в размагниченном состоянии, домены располагаются так, что результирующая намагниченность образца равна нулю. Между соседними доменами имеются границы, ширина которых исчисляется долями микрона. Размеры доменов возрастают с увеличением длины образца, и их ширина применительно к железокремнистому сплаву сотые доли миллиметра.

Вектор намагниченности в граничном слое между противоположно намагниченными доменами постепенно поворачивается из одного направления в другое. При наложении магнитного поля на ферромагнитный образец происходит перестройка вектора намагниченности отдельных доменов в направлении поля. Работа, необходимая для перестройки доменной структуры образцов, зависит от кристаллической текстуры, металлографической структуры и напряжений.

Наименьшая работа затрачивается при намагничивании ферромагнетика вдоль направления легкого намагничивания. Для монокристаллов железа и железокремнистого сплава такими направлениями являются ребра куба <100>.

В монокристаллах ферромагнетиков имеются направления наиболее трудного намагничивания. Это является результатом различного магнитного взаимодействия атомов по различным кристаллографическим направлениям.

Энергия, расходуемая на преодоление магнитного взаимодействия атомов при намагничивании ферромагнетика, называется энергией анизотропии. Расположение осей легкого намагничивания в монокристаллах по кристаллографическим направлениям соответствует минимуму энергии анизотропии.

Образование доменов в ферромагнитных телах приводит к снижению магнитостатической энергии. Наличие в ферромагнетике внутренних напряжений требует при его намагничивании дополнительных затрат энергии. Эта энергия называется магнитоупругой, её величина зависит от внешних напряжений σ, приложенных к образцу, и магнитострикции насыщения ls (относительное изменение размеров образца под действием магнитного поля).

В отсутствии внешнего магнитного поля ферромагнитный образец, охлажденный при отжиге, не обнаруживает намагниченности. При наложении внешнего магнитного поля происходит переориентировка доменов, в результате чего образец намагничивается. Намагничивание ферромагнетика происходит процессом смещения границ доменов и процессом вращения вектора намагниченности доменов.

В материалах с тремя осями легкого намагничивания (железо) магнитная структура является более сложной, так как кроме областей со 180-градусным соседством имеются области, в которых векторы намагниченности соседних доменов располагаются под углом 90°.

При равномерном распределении доменов по трем взаимно перпендикулярным ребрам куба на каждое направление приходится 1/3 объема всех доменов. Намагничивание кристалла такого ферромагнетика в сравнительно слабых полях происходит за счет смещения границ между доменами и роста доменов, для которых вектор намагниченности составляет наименьший угол с направлением внешнего магнитного поля, а в сильных полях за счет процессов вращения вектора намагниченности доменов по направлению к магнитному полю.

При помещении образца в периодическое знакопеременное поле величина и знак вектора магнитной индукции описывается циклом гистерезиса (рис.3.1).

Площадь цикла пропорциональна энергии, затрачиваемой внешним источником на перемагничивание 1 м3 образца.

Ферромагнитные материалы характеризуются зависимостью от напряженности внешнего поля Н следующих параметров: магнитной индукции В, намагниченности  J и магнитной проницаемости m. Связь между ними подчиняется следующему выражению:

В = m · m 0 · Н,                                                 (3.1)

где m0 – абсолютная магнитная проницаемость вакуума (m0=4p.10-7 Гн/м);

m - относительная магнитная проницаемость.

 Особенность намагничивания ферромагнитного материала в переменном магнитном поле состоит в том, что в толще материала образуются вихревые токи, в результате чего имеется неоднородное распределение магнитной индукции по сечению листа: в середине листа её значение меньше, а в поверхностных слоях больше. Это явление называется поверхностным эффектом. Возникающие потери энергии от вихревых токов приводят к расширению цикла гистерезиса, который в этом случае называется динамическим циклом гистерезиса. Площадь динамического цикла гистерезиса пропорциональна сумме потерь от гистерезиса и вихревых токов (рис.3.2).

Таким образом, за один цикл перемагничивания ферромагнитного материала бесполезно затрачивается энергия, переходящая в тепло, пропорциональная площади динамического цикла гистерезиса. Затрата энергии за 1 секунду, отнесенная к массе материала в 1 кг, называется удельными потерями. Удельные потери в стали слагаются из потерь от гистерезиса и вихревых токов.

 

 

Цикл гистерезиса ферромагнитного образца.

Рис. 3.1


Статический и динамический цикл гистерезиса.

Рис. 3.2

1 – статический цикл; 2 – динамический цикл.

 

Потери от гистерезиса Рг, Вт/кг, могут быть рассчитаны по формуле:

Рг = S · f / g,                                            (3.2)

где S – площадь статического цикла гистерезиса, Тл·А/м;

g - плотность материала, кг/м3;

f – частота изменения магнитного поля, Гц.

Площадь статистического цикла в свою очередь зависит от максимальной индукции, коэрцитивной силы, остаточной индукции.

Потери от вихревых токов Рв можно легко вычислить при условии равномерного изменения магнитной индукции по всему сечению листа и параллельно вектору напряженности магнитного поля:

Рв = 4Вм · f2 · d2 · Kf2 · 10-10 / (3 · g · r)                           (3.3)

где Вм – амплитуда магнитной индукции, Тл;

f – частота переменного тока, Гц;

d – толщина пластины, мм;

Kf – коэффициент формы кривой магнитной индукции;

r - удельное электрическое сопротивление материала пластины, ом·м.

Типы электротехнических сталей.

 

В соответствии с назначением выпускаемые горячекатаные и холоднокатаные стали разделяются на два класса: изотропные и анизотропные.

Изотропные – все марки малотекстурованной стали с анизотропией магнитных свойств, ограниченной определенным уровнем, и марки горячекатаной стали, имеющие слабо выраженную текстуру. Уровень магнитных свойств электротехнических сталей в значительной степени зависит от способа их изготовления, содержания, хранения, толщины листов и ленты, характера структуры и текстуры металла.

Изотропные электротехнические стали по степени легирования кремнием разделяются на шесть групп, указанных в табл. 3.1

 Таблица 3.1

Типы изотропных электротехнических сталей

Группа легирования Si, % Марка
нелегированная 0,4 2011, 2012, 2013
низколегированная 0,4 – 0,8 2011, 2112
слаболегированная 0,8 – 1,8 2211, 2212, 2214, 2216, 1211, 1213
среднелегированная 1,8 – 2,8 2311, 2312, 1311, 1312, 1313
повышеннолегированная 2,8 – 3,8 2411, 2412, 1411, 1412, 1413
высоколегированная 3,8 – 4,8 1511, 1512, 1514, 1521, 1562, 1572

 

Наименование марки складывается из четырех цифр: первая цифра означает способ производства (1 – горячекатаная, 2 – холоднокатаная), вторая – содержание Si в стали, третья – группу по основной нормируемой характеристике, четвертая – порядковый номер типа стали.

По основной нормируемой характеристике электротехническую сталь подразделяют на группы: 0 – удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (Р1,7/50), 1 – удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (Р1,5/50), 2 – удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (Р1,0/400), 6 – магнитная индукция в слабых полях при напряженности поля 0,4 А/м (В0,4), 7 – магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В10). Электротехническая сталь, выпускаемая в листах, рулонах и ленте, имеет следующие нормируемые показатели качества: по точности прокатки по толщине (Н – нормальной точности, П – повышенной), по неплоскостности (классы 1 и 2); по термической обработке (ТО – термически обработанная на магнитные свойства, без термической обработки – без обозначения), по виду покрытия (без покрытия с металлической поверхностью – без обозначения; с термостойким покрытием, не ухудшающим штампуемость,- М; с нетермостойким электроизоляционным покрытием, улучшающим штампуемость, - НШ; с термостойким электроизоляционным покрытием, улучшающим штампуемость,- ТШ; с термостойким электроизоляционным покрытием, не ухудшающим штампуемость,-Т), по коэффициенту заполнения (группы А и В), по точности изготовления по ширине (нормальной точности – без обозначения, повышенной точности - Ш).

Свойства электротехнических сталей почти во всех странах нормируются ГОСТом, который определяет минимально допустимый уровень качества и магнитных свойств стали.

Отечественная сталь отличается от зарубежной большим числом нормируемых показателей качества. Так ГОСТ 21427.3 нормирует глубину залегания поверхностных дефектов, телескопичность, среднее арифметическое число перегибов, конкретные требования к электроизоляционному покрытию.

 


Дата добавления: 2018-05-12; просмотров: 265; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!