Электронный парамагнитный резонанс
Установлено неизвестное ранее явление квантовых переходов между электронными энергетическими линиями парамагнитных тел под влиянием переменного магнитного поля резонансной частоты (явление электронного парамагнитного резонанса - ЭПР). Суть явления: постоянно в магнитном поле электронные уровни энергии парамагнитных атомов расцепляются на несколько подуровней; энергетическая разность подуровней определяется величиной поля и свойствами вещества; соответствующие квантовые переходы между этими подуровнями инициируются в переменном (высокочастотном) магнитном поле.
Открытие ЭПР послужило толчком для развития резонансных методов изучения вещества, в частности акустического парамагнитного резонанса ферро и антиферромагнитного резонанса магнитного резонанса.
При явлении акустического парамагнитного резонанса переходы между подуровнями инициируются наложением высокочастотных звуковых колебаний; в результате возникает резонансное поглощение звука.
При ферромагнитном резонансе происходит избирательное поглощение энергии электромагнитного поля: Эта энергия расходуется на возбуждение коллективных колебаний магнитоупорядоченной структуре ферромагнетика (или антиферромагнетика).
Применение метода ЭПР дало ценные данные о строении стекол, кристаллов растворов; в химии этот метод позволил установить строение большого числа соединений изучить цепные реакции и выяснить роль свободных радикалов (молекул), обладающих свободной валентностью в протекании химических реакций. Тщательное изучение радикалов привело к решению ряда вопросов молекулярной и клеточной биологии.
|
|
Метод ЭПР – очень мощный, он практически не заменим при изучении радиационных изменений в структурах, в том числе и в биологических. Чувствительность метода очень высока и составляет 1010 … 1011 парамагнитных молекул. На применении ЭПР основан поиск и проверка новых веществ для квантовых генераторов; явление ЭПР используется для генерации сверхмощных субмиллиметровых волн.
Примеры применения:
- способ текущего контроля условной вязкости гудронов и жидких битумов, отличающийся тем, что с целью непрерывности определения пропускают контролируемую струю по трубопроводу через резонатор спектрометра ЭПР и регистрируют условную вязкость по амплитуде линии спектра парамагнитного поглощения;
- способ определения поля у огурцов путем исследования семян, отличающийся тем, что с целью повышения производительности труда в селекционном процессе, измеряют активный сигнал электронного парамагнитного резонанса и определяют характер люминесценции семян по величине сигнала и интенсивности свечения судят о степени выраженности и принадлежности к полу: при величине активного сигнала электронного парамагнитного резонанса 0,66-0,68 относительных единиц и слабым свечением растения будут преимущественно мужского типа, а при сигнале 0,48-0,56 относительных единиц и интенсивном свечении - женского типа;
|
|
- способ оценки стабильности пластичных смазок путем сравнения свойств исходной и проработавшей в узле трения смазки, отличающийся тем, что с целью сокращения времени проведения испытаний микроколичеств смазки, в исходную и проработавшую смазки вводят стабильный радикал, снимают спектр ЭПР, определяют частоты вращательной диффузии радикала и по их отношению оценивают стабильность смазки.
Ядерный магнитный резонанс
Ядерный магнитный резонанс (ЯМР). Парамагнетизм вещества может быть обусловлен не только строением электронных оболочек атомов, но и магнетизмом ядер. Магнетизм ядер, также, как и магнетизм оболочек, может вызвать резонансное поглощение энергии в твердом, жидком или газообразном состоянии. Резонансные частоты метода ЯМР лежат в области 1-100 МГц, чувствительность метода составляет от 1017 … 1021 ядер. На применении ЯМР основан принцип работы приборов для стабилизации и точнейших измерений магнитных полей, а также для анализа смесей по их изотопному составу. Сильный сигнал ЯМР наблюдается в присутствии ядер изотопа углерод-13, что предопределило применение ЯМР и его разновидности – ядерного квадрупольного резонанса в химии углеродов, особенно природных (нефть).
|
|
Примеры применения:
- способ измерения расхода жидкостей, основанный на явлении ЯМР, отличающийся тем, что с целью измерения расхода жидкости, обладающих сильным сигналом магнитного резонанса используют свободную процессию ядер в магнитном поле земли;
- способ измерения расхода жидкости по А.с. 179511, отличающийся тем, что с целью упрощения устройства измеряют скорость затухания сигнала ЯМР при движении жидкости в неоднородном магнитном поле и по ней судят о расходе;
- способ измерения проницаемости пористых материалов, основанный на явлении ограниченной самодиффузии молекул жидкости, включающий ядерно-магнитные резонансные измерения с импульсным градиентом магнитного поля, причем интервал времени между импульсами градиента устанавливают больше, чем время, необходимое для диффузии молекул на расстояние, равное размеру пор в образце, измеряют сигнал эха образца, отличающийся тем, что с целью получения достоверного значения проницаемости увеличивают интервал времени между импульсами градиента при фиксированной их амплитуде, повторяют измерение амплитуды сигнала эха и по зависимости амплитуды эха от интервала между импульсами градиента судят о проницаемости.
|
|
Эффект Оверхаузера-Абрагама. В том случае, если в атоме имеет место и ядерный, и электронный парамагнетизм, то их взаимодействие приводит к изменению интенсивности сигнала ЯМР. При возрастании насыщения электронного парамагнитного резонанса и образце с парамагнитными ядрами наблюдается значительное увеличение интенсивности ЯМР. Этот эффект был использован для разработки метода динамической поляризации ядер; вещество с поляризованными ядрами очень чувствительно как к величине магнитного поля, так и ее изменению. Это свойство и лежит в основе практически: применений эффекта.
Пример применения:
- магнитный градиометр, служащий для измерения разницы между магнитными полями в двух зонах, содержит два ядерных фильтра - по одному в каждой зоне. Каждый из ядерных фильтров является фильтром такого типа, в котором используется эффект Обрхаузера-Абрагама, и выдает выходной сигнал, который усиливается и подводится к одному из входов операционного усилителя. Выходной сигнал усилителя расщепляется и подводится к входной катушке двух фильтров. Фазометр измеряет разность фаз входных сигналов операционного усилителя, который может быть суммирующего или дифференциального типа, что определяется фильтром ядерного фильтра (с перекрещивающимися или параллельными катушками). Разность фаз находится в прямой зависимости от разности между полями.
Эффект Оверхаузера – резкое возрастание интенсивности ядерного магнитного резонанса (ЯМР) при насыщении уровней электронного парамагнитного резонанса в том же веществе.
Экспериментально наблюдался в 1953 г. вначале в металлах, затем в полупроводниках, свободных радикалах и жидкостях с парамагнитными примесями [3].
ДРУГИЕ ФИЗИЧЕСКИЕ ЭФФЕКТЫ
Стробоскопический эффект
Если быстро вращающееся тело освещать импульсами света, частота следования которых совпадает с круговой частотой вращения, то наблюдатель будет видеть тело как бы неподвижным. Это позволяет рассматривать особенности его поверхности или какие-либо ее изменения, не останавливая вращения тела.
Пример применения:
- способ определения окружных люфтов трансмиссий с ведомым и ведущими валами, заключающийся в том, что на ведомом валу наносят базовую метку и вращают его с определенной и постоянной угловой скоростью, отличающийся тем, что с целью повышения точности определения люфтов, освещают базовую метку стробоскопическими импульсами с частотой, при которой метка, кажется неподвижно изменяют синхронно скорость вращения ведущего вала и частоту импульсов и определяют угол отклонения метки от первоначального ее положения, по которому судят о люфтах трансмиссий.
Если частоты световых импульсов и вращения тела несколько отличаются, то будет наблюдаться кажущееся вращение тела, скорость которого гораздо меньше действительной скорости вращения. Сказанное справедливо и для поступательного (колебательного) движения тел.
Стробоскопический эффект лежит в основе кино. Отдельные изображения последовательных стадий движения, быстро сменяя друг друга, создают иллюзию непрерывного движения. При этом важную роль играет особенность нашего светового восприятия инерционность, глаз как бы "видит" изображение предыдущего кадра некоторое время после того, как экран погас.
Движение в кинофильме может быть ускоренным или замедленным в зависимости от соотношения частот съемки и воспроизведения, что используется для визуализации быстро или медленно протекающих процессов.
Несмотря на свою простоту, стробоскопический метод может являться основой многих тонких исследований.
Пример применения:
- фазовый способ измерения длины волны ультразвука, основанный на использовании стробоскопического эффекта при помощи бегущих ультразвуковых волн, отличающийся тем, что с целью повышения точности, модулируют одну из бегущих ультразвуковых волн, освещаемых пучком света, по фазе, наводят последовательно ось фотоэлектрического микроскопа на максимум освещенности видимого изображения и по расстоянию между соседними максимумами судят о длине ультразвуковой волны.
В заключении отметим, что стробоскопический эффект является ярким проявлением закона согласования ритмики частей системы.
Стробоскопический эффект – зрительная иллюзия, возникающая в случаях, когда наблюдение какого-либо предмета осуществляется не непрерывно, а в течение отдельных малых, периодически следующих один за другим интервалов времени, например при периодических вспышках света в темном помещении. Стробоскопический эффект обусловлен инерцией зрения, то есть сохранение в сознании наблюдателя зрительного образ а на некоторое (малое) время после того, как вызвавшая образ картина исчезнет. Если время, разделяющее дискретные акты наблюдения, меньше времени «гашения» зрительного образа, то образы, вызванные отдельными актами, сливаются, и наблюдение субъективно ощущается как непрерывное.
Применение: в стробоскопических приборах – контрольно-измерительных устройствах для наблюдения быстрых периодических движений объектов. Они позволяют измерять частоты колебаний механических и электронных систем, резонанса, числа оборотов механизма, применяют, например, как индикатор угловой скорости [3].
Муаровый эффект
При наложении двух систем контрастных полос возникает узор, образованный их сгущениями в местах, где полосы одной системы попадают в промежутки между полосами другой системы. Возникновения таких узоров называют муаровым эффектом.
Простейший муаровый узор возникает при пересечении под небольшим углом двух систем равноудаленных параллельных полос (линий). Небольшое изменение угла поворота одной из систем ведет к значительным изменениям расстояния между элементами муарового узора.
Муаровый узор образуется также при наложении двух непересекающихся систем равноудаленных параллельных линий, когда величина шага одной из систем слегка отлична от другой. При этом, чем меньше разница в шаге, тем больше расстояние между муаровыми полосами. Это позволяет получить колоссальное увеличение (в миллионы раз) разницы в ширине промежутков между линиями. Иначе говоря муаровый эффект дает возможность визуально без применения оптических систем, обнаруживать ничтожные отклонения в почти одинаковых периодических структурах. В настоящее время метод муара широко применяют при контроле точности делительных устройств для изготовления дифракционных решеток.
Муар возникает на электронной микрофотографии двух кристаллов, наложенных таким образом, что их атомные решетки почти совпадают. Любой дефект, нарушающий регулярность структуры кристалла, четко проявляется в муаровом узоре. Увеличение при этом таково, что позволяет видеть смещения атомов, величины которых меньше диаметра самого атома.
Если две решетки из равноудаленных параллельных прямых, несколько отличных по величине шага, двигать одну относительно другой в направлении, перпендикулярном линиям, то полосы муарового узора будут двигаться со скоростью гораздо большей, чем относительная скорость движения самих решеток. При этом направление их движения совпадает с направлением относительного смещения решетки с меньшим шагом. Таким образом, малое перемещение одной из решеток приводит к значительному перемещению полос муара, которое легко обнаружить и измерить.
Пример применения:
- способ определения деформаций по картине муаровых полос, отличающийся тем, что с целью повышения точности измерения деформаций, определяют отношение скоростей взаимного перемещения деформированной и эталонной сеток и скорости перемещения муаровой полосы и по величине этого отношения судят о величине деформаций.
Описанное проявление муарового эффекта издавна используется во всех измерительных приборах, обладающих нондусом, таких, как микрометр или штангенциркуль.
С помощью эффекта муара можно визуализировать ничтожные изменения показателя преломления прозрачных сред, помещая их между решетками. Так, например, можно визуально изучить динамику растворения двух веществ.
Этот же принцип позволяет производить экспресс-анализ качества оптических деталей. Линзы помещают между решетками, наличие выпуклой линзы увеличивает элементы муарового узора, вогнутой – уменьшают. При этом обе линзы поворачивают узор в противоположных направлениях на угол, пропорциональный фокусному расстоянию. В местах неоднородностей структуры или формы линз линии узора искажаются.
Еще пример контроля оптики:
- интерференционный способ измерения клиновидности оптических прозрачных пластин, заключающийся в том, что пучок света от лазера фокусирует с помощью объектива в плоскость отверстия в экране, за которым устанавливают контролируемую пластину, отличающийся тем, что с целью повышения точности и производительности измерений, от контролируемой пластины при ее фиксированном положении получают прозрачную копию интерференционных колец, поворачивают пластину в ее плоскости на 180, накладывают интерференционную картину на копию и по ширине муаровых полос, образовавшихся от наложения, измеряют клиновидность платины.
Множество муаровых узоров можно получить, совмещая решетки, образованные самыми различными линиями, например концентрическими окружностями, спиралевидными волнообразными или радиально исходящими из точки линиями и даже семействами равномерно расположенных точек. Таким образом можно моделировать многие сложные физические явления, такие, как взаимодействие электростатических полей, интерференция волн и другие. Подобными методами решаются некоторые задачи архитектурной акустики.
В Японии предложено использовать муаровый эффект для составления топографических карт предметов. Объект фотографируют через решетку из тонких нитей, сбрасывающую на него четкую тень. Тень деформируется в соответствии с рельефом объекта и при взаимодействии ее с реальной решеткой возникает муаровый узор, наложенный на изображение объекта. На фотографии расстояние между линиями муара соответствует глубине рельефа. Такой метод очень эффективен, например, при изучении деформации быстровращающихся деталей, при анализе обтекания тел поверхностным слоем жидкости в медицинских исследованиях анатомического характера.
Универсальность метода муара, простота преобразования с его помощью различных величин, близка к ИКР, высокая разрешающая способность - все это говорит о том, изобретатели еще не раз обратятся в своей практике к муаровому эффекту.
Высокодисперсные структуры
Одной из тенденций развития технических систем является увеличение степени дисперсности входящих в них веществ. При этом наблюдаются качественные изменения свойств дисперсной структуры по сравнению со свойствами монолитного нераздробленного вещества.
Высокодисперсные структуры подразделяются на сыпучие, консолидированные и коллоидные. Из сыпучих порошков особый интерес представляют ферромагнитные порошки, так как ими легко управлять магнитным полем (1), и их можно вводить в виде индикаторных добавок в немагнитные вещества с целью выяснения условий действующих внутри исследуемого вещества (температуры, давления и т.п.).
Пример применения:
- способ определения степени затвердевания полимерного состава. В полимер в небольшом количестве вводят ферромагнитный порошок. Полимер, затвердевая, сдавливает частицы порошка, который при этом меняет свои магнитные свойства, что легко обнаружить.
Консолидированные тела – это тела, полученные путем прессования или спекания мелкого порошка (размеры частиц от 10 .. 100 мкм). Консолидированные тела обнаруживают много интересных свойств (2), отличающих их от сплошного тела, состоящего из того же вещества. Например, при консолидировании порошка путем прессования можно получить анизотропные тела, несмотря на то, что вещество, составляющее частицы вещества, изотропно. Параметры такого консолидированного тела (электропроводность, теплопроводность, распространение звука, модуль упругости и т.п.) в направлении прессования выше, чем в сплошном теле из того же вещества, причем все свойства изменяются практически на один и тот же масштабный коэффициент пропорциональности. Зная, в каком масштабе искажена одна из условных характеристик пористого образца (например, электропроводность), можно легко определить масштабы искажения и других характеристик этого образца (теплопроводности, скорости звука, модуля сжатия, коэффициента Пуассона и т.д.), а значить легко можно определить и сами характеристики данного образца. Контролируя какую-нибудь из легкоизмеряемых характеристик пористого тела в процессе его консолидации можно однозначно определить изменения интересующих нас других его характеристик.
Жидкие кристаллы
Представим себе жидкость, молекулы которой имеют удлиненную палочкообразную форму. Силы взаимодействия "выстраивают" их параллельно друг другу и ведут они себя как обычные молекулы жидкости, но с учетом единственного ограничения при всех перемещениях должно сохраняться (в целом) некоторое выделенное направление длинных осей. У такой жидкости будут различные оптические и другие характеристики (например, теплопроводность) в различных направлениях, т.е. они будут анизотропной. А ведь анизотропия всегда считалась отличительной чертой кристаллического состояния!
Жидкость, описанного выше типа, принадлежит обширному классу веществ, называемых нематическими жидкими кристаллами. Слово "немос" по-гречески "нить", и, действительно, молекулы таких жидких кристаллов напоминают бусинки, укрепленные на нити.
Возможны и другие типы молекулярной архитектуры, создающие анизотропию. Укладка молекул слоями и пачками приводит к еще одному классу жидких кристаллов – сметическим. Такая упаковка молекул создает анизотропию не только оптических, но и механических свойств, поскольку слоя легко смещаются относительно друг друга. Название этой группы связано с греческим словом "смектос" (мыло). Такое расположение молекул характерно для мыльных растворов, эмульсий и т.д.
Третьим распространенным типом жидких кристаллов являются холестерические, в которых молекулы укладываются в плоскостях подобно описанным выше нематическим кристаллам, но сами плоскости повернуты друг относительно друга. Вектор, связанный с длинной осью, так называемой "директор", описывает в пространстве спираль. Названием этот класс жидких кристаллов обязан печально известному холестирину, у которого впервые были обнаружены подобные свойства.
Прежде всего было найдено, что воздействие электрического поля на жидкие кристаллы приводит к электрооптическим эффектам, не имеющих аналогов среди прочих оптических сред. Электрооптическая ячейка состоит из двух стекол, между которыми находится тонкий слой жидкого кристалла. Окрашенные поверхности стекол обработаны таким образом, что они, оставаясь прозрачными, пропускают электрический ток. Таким образом, получают как бы прозрачный конденсатор, диэлектриком внутри которого служит слой жидкого кристалла.
Первым из открытых и, пожалуй наиболее впечатляющих эффектов стало динамическое рассеяние. При определенном значении приложенного поля жидкость между электродами как бы становится мутной. Свет, до сих пор беспрепятственно приходивший через жидкий кристалл, рассеивается, и участки с повышенной напряженностью поля становятся видны.
Этот простой эффект имеет большую практическую ценность. Электропроводящие участки поверхности стекла могут быть выполнены в виде букв или любых геометричеких фигур. Подавая на них соответствующие напряжения, можно формировать различным образом прозрачные и непрозрачные участки, то есть с ничтожными затратами энергии создавать подвижные и неподвижные картины. Использование динамического рассеяния на слое жидкого кристалла толщиной в несколько микрометров позволяет получить изображение, затрачивая мощность порядка микроваттов. При этом из-за тонкости слоя жидкого кристалла необходимое напряжение на ячейке составит всего несколько вольт.
Удивительные превращения происходят с лучом света при взаимодействии с холестерическим жидким кристаллом, т.е. периодической спиралью. Освещенный белым светом, он кажется окрашенным и при поворотах (при изменении угла наблюдения) начинает переливаться всеми цветами радуги. Этот эффект возникает потому, что в различных направлениях чешуйки кристалла, отражающие свет, расположены на различных расстояниях и отражают из белого цвета лишь волны с определенной длинной.
Такой простой и красивый эффект дает ошеломляющую возможность. Например, пусть какой-то участок поверхности нагрет на сотые доли градуса выше окружающих. Приложим к этой поверхности пленку с нанесенным слоем холестерического жидкого кристалла. В "горячей" точке шаг спирали чуть-чуть увеличится и на пленке появится точка иного цвета. Покрыв готовое изделие (это может быть интегральная схема или деталь двигателя) слоем холестерического вещества, можно получить цветную картину тепловых направлений, на который контрастными пятнами поступают любые дефекты, и неоднородности, даже скрытые далеко в структуре, благодаря неодинаковой их теплопроводности.
Цвет окраски жидкого кристалла однозначен с температурой нагретой поверхности. Этот эффект лежит в основе разработанного преобразователя инфракрасного изображения в видимое.
Основным элементом этого устройства является пленка холестерического жидкого кристалла, повешенная на тонкую черную мембрану. Мембрана поглощает сфокусированное на ней инфракрасное излучение и передает тепло слою жидкого кристалла. Цвет жидкокристаллической пленки (в отраженном свете) зависит от температуры, поэтому при освещении пленки белым светом получается видимое изображение инфракрасного излучения. Напомним, что для преобразования инфракрасного излучения в видимое обычно используют преобразователи на основе фотоэмиссионных или фосфороресцирующих устройств с весьма сложной и дорогостоящей электроникой. Предельная простота и малая стоимость делает жидкокристаллические преобразователи несравненно более выгодными.
Из смеси холестерических веществ можно изготавливать температурные индикаторы в интервале температур от 20 до 250 °C. Индикаторы представляют собой тонкую гибкую пленку жидкого кристалла, заключенную между двумя полимерными пленками. Такую пленку можно накладывать на поверхности деталей для регистрации температурных градиентов в различных направлениях.
Жидкие кристаллы холестерического типа (или их смеси) весьма чувствительны к присутствию паров различных химических веществ. Присутствие крайне малого количества пара может изменить структуру жидкого кристалла. С помощью жидкого кристалла удается установить присутствие в воздухе пара при его концентрации – несколько частей на миллион. Этот способ имеет большую практическую ценность.
Лента Мебиуса
Если взять бумажную ленту, сблизить ее противоположные концы так, чтобы получилось кольцо, а затем развернуть один из концов на 180° и склеить ее друг с другом, то мы получим т.н. кольцо Мебиуса, тело, обладающее очень интересным свойством. Можно ли одновременно находится и снаружи и внутри кольца? Явное физическое противоречие. Однако, оно легко преодолевается, если это кольцо – кольцо Мебиуса, это тело имеет лишь одну неверность, и потому, например, муравей, ползущий по внутренней поверхности нашего бумажного кольца, не переползая через край полоски, может оказаться на "наружной" поверхности кольца. Кольцо Мебиуса не одинаково среди подобных тел, так, например, существует и "одноповерхностная" бутылка.
Пример применения:
- устройство для формирования детали из полимерных материалов, например, мембран из провинилта, содержащее замкнутую ленту с формирующими элементами, натянутую на барабан, ведущий из которых снабжен нагревателем и направляющее ролики, отличающееся тем, что, с целью повышения долговечности ленты, они выполнены в виде ленты Мебиуса с формирующими элементами на двух ее сторонах.
Реология
Реология (от греческого rheos – течение, поток) – изучает процессы, связанные с необратимыми остаточными деформациями и течением различных вязких и пластичных материалов (ньютоновских жидкостей, дисперсных систем и др.).
Электрореологическим эффектом называется быстрое обратимое повышение эффективной вязкости неводных дисперсных систем в сильных электрических полях.
Электрореологические суспензии состоят из неполярной дисперсной среды и твердой дисперсной фазы с достаточно высокой диэлектрической проницаемостью. Дисперсными средами могут служить неполярные или слабополярные органические жидкости с достаточно высоким электрическим сопротивлением, например, светлые масла (вазелиновое, трансформаторное), растительные мала (касторовое), диэфиры (дибутилсебацинат), нефтановые углеводороды (циклогексан), керосин, загущенный малыми добавками полиизобутилена. В качестве дисперсной фазы широко применяется кремнезем в различных модификациях. Размеры частиц не более 1 мкм.
Электрореологический эффект не проявляется заметно вплоть до некоторой пороговой напряженности электрического поля Eкр. Величина ее зависит от состава суспензии и температуры. После достижения значения Eкр эффективная вязкость растет приблизительно квадратично, но не до бесконечности, а до ее насыщения. Эффект наблюдается при постоянном и переменном поле. При увеличении частоты кажущаяся вязкость вначале остается неизменной, затем падает. Вид зависимости эффекта от частоты зависит от состава дисперсной системы.
Электрореологические суспензии весьма чувствительны к изменениям температуры. Нагрев снижает абсолютную величину эффективной вязкости системы. С ростом температуры влияние электрического поля постепенно нивелируется.
Под действием сдвига в так называемых электрочувствительных дисперсных системах происходят изменения диэлектрической проницаемости, электропроводности и тангенса угла диэлектрических потерь. Такие изменения диэлектричеких параметров предложено называть реоэлектрическим эффектом. Важное значение реоэлектрического эффекта для практики связано с возможностью получения на его основе электрически анизотропных материалов, в частности электронов. Если частицы дисперсной фазы несут заряд преимущественно одного знака, в концентрированных системах при наложении электрического поля наблюдается электросинерезис – сжатие структурного каркаса в целом у одного электрода и выделение дисперсной среды у другого.
В суспензиях, если частички несут положительный или отрицательный заряд, под влиянием электрического поля протекает электрофорез и соответственно на катоде или на аноде осаждается слой дисперсной фазы. Это свойство используется для создания информационных табло и экранов отображения плоских устройств для показа картин с помощью дисперсных систем, прозрачность которых изменяется под влиянием электрического поля.
Области возможного практического применения электрореологического эффекта чрезвычайно разнообразны и широки:
1) регулирование движения жидкости, прокачиваемой через узкий канал;
2) конструкции муфт сцепления, тормозов и других фрикционных устройств;
3) зажимные и фиксирующие устройства (если пленку электровязкой жидкости нанести на тонкую пластину диэлектрика, с другой стороны которого располагаются электроды, соединенные с источником одно или трехфазного тока, то электропроводный эффект, установленный на пластине, будет жестко зафиксирован "затвердевший" пленкой при наложении достаточно интенсивного электрического поля);
4) жидкие электрогенераторы, преобразователи тока;
5) электрокинетические весы и др.
Реология полимерных растворов – реологически сложные среды, обладающие нелинейными вязкоупругими, вязко-пластичными и вязко-сыпучими свойствами, которым присущ неравновесный режим течения в трубах. Реологические особенности таких систем обуславливают проявление разнообразных свойств и эффектов, на основе которых можно разработать новые системы измерения вязкости. Известно, что при сдвиговом течении в вязкоупругих системах действуют не только касательные, как у воды или у любой другой ньютоновской жидкости, но и нормальные напряжения, которые характеризуются модулем сдвиговой упругости – реологическим параметром системы и скоростью сдвига. Действие нормальных напряжений определяют характерные реологические эффекты при движении вязкоупругих систем.
Подбор примеров, которые будут рассмотрены, ни в коем случае не является обзором существующих экспериментальных данных относительно реологических свойств вязкоупругих систем любой природы.
Основная цель приводимого описания различных эффектов заключается в демонстрации многообразия встречающихся реологических свойств и, что самое главное, их несводимости к явлению вязкости. Наоборот, каждый из описанных ниже экспериментов показывает, что определяющие факторы поведения исследуемой системы в тех или иных условиях – время релаксации жидкости или модуль сдвиговой упругости.
Необходимо отметить, что все рассматриваемые свойства присущи не только одному типу жидкостей, но и в той или иной степени всему многообразию систем, применяемых в нефтяной промышленности.
Эффект Вайсенберга. Пусть вязкоупругая жидкость находится в кольцевом зазоре между двумя вертикально расположенными концентрическими цилиндрами, внутренний цилиндр вращается с некоторой угловой скоростью. В случае ньютоновской жидкости вследствие действия центробежных сил, обусловленных вращением жидкости, около внутреннего цилиндра уровень жидкости понижается, а вблизи внешнего – повышается. В случае вязкоупругой жидкости, когда действуют нормальные напряжения, наблюдается обратная картина – вблизи внутреннего цилиндра уровень жидкости повышается (внутренний цилиндр выталкивается). Этот же эффект происходит и при вращении жидкости между двумя горизонтальными пластинами, когда распределение давления по радиусу неравномерное, с максимумом в центре.
Разбухание струи (Барус-эффект). При вытекании ньютоновской жидкости из трубки диаметр струи вследствие закона сохранения количества движения вниз по потоку сужается по сравнению с диаметром отверстия. При истечении из трубы вязкоупругой жидкости наблюдается расширение диаметра струи до размеров, значительно больше диаметра трубки, иногда превосходящих размер отверстия в три-четыре раза. Изменение формы жидкости после выхода из трубы было впервые замечено американским биологом Д. Барусом, который для опытов использовал очень вязкий материал, называемый корабельной клеевой краской.
Эффект может быть обусловлен сочетанием упругости жидкости и сходящимся характером линий тока на входе в трубу. Если жидкость течет по трубе таким образом, что ее частицы перемещаются параллельно оси трубы, а на входе, в области сходящегося течения, имеют составляющую скорости по направлению к оси, то жидкие цилиндры, коаксиальные с трубой, должны увеличивать свою длину и уменьшаться в диаметре течении внутри трубы. Если жидкость при истечении из трубы еще помнит предысторию своего движения на ее входе, то естественно ожидать, что, покидая трубу, жидкость должна изменять форму в некотором смысле противоположно тому, как это ей пришлось сделать раньше, т.е. жидкий цилиндр будет уменьшаться в длине и возрастать в диаметре. В таком случае эффект должен был бы снижаться при увеличении длины трубы, что и происходит на самом деле. Однако эффект не исчезает полностью при возрастании длины трубы.
Такое "остаточное" увеличение диаметра подтверждает результат эксперимента, при котором жидкость в трубе находилась в покое в течение времени, значительно превышающем время релаксации и затем вытеснялась из трубы. Это объясняется тем, что при движении жидкости в трубе в ней возникают нормальные напряжения, стремящиеся прижать жидкость к стенкам. При вытекании в открытое пространство ограничивающих стенок нет и под действием релаксирующих нормальных напряжений струя разбухает.
Эластичная турбулентность. При движении полимерного раствора по трубе с малыми скоростями вытекающая струя жидкости будет гладкой и ровной, в то время как при больших скоростях поток становится неравномерным и неупорядоченным. В последнем случае для ньютоновской жидкости число Рейнольдса обычно меньше критического значения, при котором течение становится турбулентным. Следовательно, упругие свойства раствора приводят к нестабильности течения.
При больших скоростях полимерные струи могут даже распадаться на отдельные капли, а в некоторых случаях при очень больших скоростях деформаций струя снова становится гладкой. Объясняется это тем, что при превышении некоторого критического напряжения сдвига возможно проскальзывание жидкости у твердых стенок. При этом скоростная характеристика трения скольжения имеет падающий участок, что определяет возможность неустойчивого режима течения и возникновения релаксационных автоколебаний при течении жидкости.
Неустойчивый режим может быть также обусловлен специфической упругой гидродинамической неустойчивостью при движении вязкоупругих жидкостей.
Можно также предположить, что наличие аномальных вязкостных свойств, в частности, резкая зависимость вязкости от градиента скорости и температуры, связанная с происходящими в процессе течения структурными перестройками, может служить причиной возникновения описанного явления.
Эффект Кэя. Экспериментируя с 6 %-ным раствором полиизобутилена в динамике, Кэй обнаружил, что струйка раствора, выливающаяся из колбы в широкий и плоский сосуд, через каждые несколько секунд поднимается вверх и спускается дугой, снова достигая поверхности жидкости в сосуде на расстоянии порядка нескольких сантиметров от первоначальной точки падения.
Устойчивость жидких струй.Полимерные растворы способны образовывать сравнительно долгоживущие нити. Это наблюдается, например, на заключительной стадии распада тонкой капиллярной струи раствора полимера. Вместо того, чтобы под действием капиллярных сил распасться на отдельные капли, струя на значительном протяжении сохраняет "четочную структуру", т.е. имеет вид системы капель, соединенных тонкими нитями. Нити под действием поверхностного натяжения, создающего боковое обжатие жидкости, постепенно утончаются во времени и, что эквивалентно, по мере удаления от насадка.
Если струю вязкоупругой жидкости, например, раствора полимера или высокосмолистой нефти, вытекающую вертикально вниз из капилляра, направить в стакан, а затем медленно отодвигать его в сторону, то струя отклонится от вертикали и последует за стаканом. Если стакан отодвинут недалеко, то движение жидкости в искривленной струе происходит устойчиво и стационарно. Наличие такой формы равновесия связано с проявлением нормальных напряжений при одноосном растяжении элемента вязкоупругой жидкости. Стационарная струя в поле силы тяжести принимает искривленную форму, напоминающую цепную линию. Это означает, что в струе происходит заметное продольное натяжение, обусловленное действием нормальных напряжений.
Можно сделать некоторые качественные выводы о роли упругих эффектов в явлении "прядимости", т.е. способности жидкости к образованию длинных прядей нитей. Вопрос состоит не в том, какие силы обеспечивают равновесие нити (например, для достаточно тонких нитей это могут быть силы поверхностного натяжения), а почему нить устойчива, т.е. почему в не развиваются случайно возникающие местные утончения. Место утончение в длинной нити не будет прогрессировать, если уменьшение диаметра нити приводит к увеличению действующей в ней продольной силы. Можно показать, что если радиус нити меньше некоторого критического значения, определяемого упругими напряжениями и коэффициентом поверхностного натяжения, то ее растяжение происходит устойчиво. Отметим также, что время распада растянутой нити не может быть существенно меньше времени релаксации упругого напряжения.
Упругое последействие. Для исследования упругого восстановления, проявляющегося в заметном изменении формы при неизменном объеме, были поставлены следующие опыты. При внезапном прекращении вращения сосуда вокруг вертикальной оси, в котором находится. 5 %-ный раствор полиметилметакрилата в диметилфталате, наблюдается возвратное движение взвешенных в нем пузырьков газа.
Характерен следующий опыт. Если внезапно прекратить течение выливающейся из бутылки жидкости, разрезав поток на некотором расстоянии ниже горлышка на две части, то верхняя часть быстро вернется в бутылку. Схожий опыт можно проделать и в несколько других условиях. Опустим в сосуд с вязкоупругой жидкостью, например тяжелой нефтью, палочку и затем поднимем ее вверх. За концом палочки потянется нить жидкости, которая обладает сравнительно большой устойчивостью. Если обрезать нить жидкости, то верхняя часть нити начинает совершать колебания в вертикальной плоскости.
Взаимодействие струи жидкости с поверхностью. В добыче нефти хорошо известен способ гидропескоструйной перфорации, заключающийся в образовании отверстий в металле обсадной колонны под действием струи воды, в которую для усиления абразивного действия добавляют песок.
Были проведены эксперименты по изучению эффективности действия различного рода добавок к воде на пробивную способность струи, Сравнивали добавки песка, металлической (стальной) крошки и высокомолекулярного полимера. Результаты опытов показали, что наибольшей пробивной способностью обладает струя воды с полимерными добавками, а металлическая крошка занимает промежуточное место между добавками полимера и песком. Это связано с наличием у полимера релаксационных свойств. В процессе взаимодействия струи с поверхностью, находящиеся в воде частички той или иной добавки при ударе о металл деформируются, при этом часть кинетической энергии тратится на деформирование (упругое или пластическое) этой частички. Поскольку взаимодействие частички и поверхности длится конечное время, то поведение полимера будет определяться соотношением времен релаксации и взаимодействия. При больших скоростях истечения время взаимодействия значительно меньше времени релаксации и частичка полимера не успевает деформироваться, т.е. полимер в данных условиях ведет себя как жесткое недеформируемое тело. Это способствует усилению разрушительной способности струи воды.
Всплывание пузырей газа в вязкоупругой жидкости. Скорости всплывания пузырей газа в неподвижной вязкоупругой жидкости с высотой возрастают. В условиях описываемых опытов размеры пузырей по мере подъема практически не изменялись, поэтому причиной ускорения движения поднимающихся пузырей нельзя считать рост архимедовой силы. По данным экспериментов этот эффект более четкое выражен у удлиненных пузырей. Непосредственные измерения давления по высоте столба жидкости показали, что оно меняется неравномерно. Датчик, установленный на стенке трубы, регистрирует повышение давления с момента прохождения крайней верхней точки контура пузыря через уровень расположения датчика. По мере поднятия пузыря показание датчика увеличивается, достигая максимального значения в нижней части пузыря. После прохождения пузыря показание датчика быстро восстанавливается до значения, соответствующего гидростатическому давлению. Наблюдаемый эффект можно объяснить кинетикой развития нормальных напряжений в вязкоупругой жидкости при внезапном наложении сдвигового течения. При прохождении головы пузыря через уровень расположения датчика начинается движение жидкости в зазоре между стенкой трубы и поверхностью пузыря. По мере подъема пузыря время движения жидкости в данном сечении увеличивается, соответственно возрастают нормальные напряжения. Это приводит к повышению давления по высоте пузыря от головной части к нижней, и, следовательно, к появлению дополнительной силы, приложенной к пузырю снизу вверх. Вследствие этого скорость подъема пузыря возрастает. Если высота пузыря небольшая, то за время его прохождения через выбранное поперечное сечение трубы нормальные напряжения не успевают достичь максимального значения и выталкивающая сила будет невелика. Таким образом, существует оптимальная высота пузыря, поднимающегося в заданной жидкости, при которой время его подъема будет наименьшим.
Движение в капилляре с переменным сечением. Рассмотрим результаты опытов по изучению движения вязкоупругой жидкости в двух прямолинейных капиллярах, один из которых имеет постоянный диаметр, а другой – периодически изменяющийся по длине, причем средний диаметр второго равен диаметру первого капилляра. Течение во всем диапазоне исследования происходит с очень малой скоростью, поэтому число Рейнольдса во всех случаях не превосходит нескольких единиц. Если для первого капилляра зависимость Q - р имеет вид прямой линии, проходящей через начало координат, то для капилляра с переменным сечением эта зависимость отклоняется к оси давлений. В силу малости числа Рейнольдса появление дополнительных сопротивлений объясняется релаксационными свойствами жидкости, но не связано с возникновением инерционных сил из-за переменности (скорости в капилляре). При движении через систему сужающихся и расширяющихся каналов с малой скоростью напряжения, вызванные деформацией жидкости, успевают релаксировать, и по сравнению с вязким сопротивлением ими можно пренебречь. С увеличением скорости движения упругие напряжения не успевают релаксировать, поэтому общее сопротивление возрастает. Таким образом, помимо числа Re течение дополнительно характеризуется новым параметром, равным отношению времени релаксации жидкости к характерному времени процесса.
Жидкий канат. Если тяжелую нефть, густое масло или мед лить на тарелку с достаточно большой высоты, то на некотором расстоянии от тарелки струйка жидкости начинает закручиваться колечками. Это связано с тем, что падая струйка сжимается и выгибается. Вследствие действия упругих напряжений струйка не может разорваться. Поэтому, если количество падающей жидкости больше, чем может сразу поглотить жидкость, находящаяся в тарелке, то струйка начинает завиваться. Витки некоторое время находятся на поверхности, постепенно поглощаясь слоем жидкости.
Эффект "зонтика". При введении в состав полимерной системы некоторых видов наполнителей, например песка, она приобретает вязко-сыпучие свойства. Реологические свойства вязко-сыпучей среды помимо вязкости характеризуются углом внутреннего трения, что легко представить по аналогии с кучей песка, у которой угол откоса имеет постоянное для данной системы значение. При изменении этого угла песок начинает сыпаться.
На движение вязко-сыпучей системы существенно влияет сила тяжести. Если поместить пробку из вязко-сыпучего материала в вертикальную трубу, то наблюдается следующее интересное явление – страгивающее усилие сверху вниз превосходит усилие, которое нужно приложить, что заставить пробку двигаться вверх.
Далее приведены в кратком виде некоторые эффекты в полимерных жидкостях.
Рассмотрим течение жидкости по наклонному желобу полукруглого сечения. В обоих случаях поток ламинарный. Поверхность ньютоновской жидкости плоская, за исключением участков у границ, в то время как поверхность полимерной жидкости слегка выпуклая.
Эффект, происходящий при медленном течении жидкости из широкой трубы в узкую. В полимерной жидкости образуются вихри, направленные вверх против течения, в результате чего часть жидкости захватывается этими вихрями и не проникает в узкую трубу.
Эффект, в котором наблюдается течение около цилиндра, колеблющегося в поперечном направлении, называется акустическим потоком. Высокочастотные колебания создают вторичное течение в окружающей жидкости. При этом направление течения в полимерной жидкости противоположно тому, которое имеет место в ньютоновской жидкости.
Что происходит, когда в трубку, наполненную жидкостью, бросают один за другим два шарика? В ньютоновской жидкости второй шарик всегда будет догонять первый и, в конце концов, столкнется с ним. В полимерной жидкости то же самое произойдет, если второй шарик бросить почти сразу за первым. Но если шарик опустить через определенный критический интервал времени, то при падении второй шарик будет отталкиваться от первого.
Рассмотрим случай, когда вращающийся диск на дне сосуда приводит к течению, при котором в ньютоновской жидкости поверхность в центре опускается (образуется воронка), а в полимерной жидкости поднимается.
Пусть вращающийся диск помещен на поверхность каждой из рассматриваемых жидкостей. Возникающий первичный поток, направлен по касательной к диску, вызывает затем вторичный поток. При этом ньютоновская жидкость отбрасывается вращающимся диском так, что у стенок сосуда она движется вниз, а затем вблизи оси сосуда вновь поднимается вверх. В полимерной жидкости также имеется вторичное течение, но движение происходит в противоположном направлении.
В ньютоновской жидкости сифонный эффект действует лишь тогда, когда его засасывающий конец расположен ниже поверхности жидкости. Однако полимерную жидкость можно выкачать из сосуда, даже если имеется некоторое расстояние между поверхностью жидкости и концом сифона.
Эффект увлечения.
Эффект увлечения появляется в результате:
1) возникновения потока электронов в металле или полупроводнике в условиях, когда фононы не находятся в тепловом равновесии, а образуют направленный поток, направленный при наличии градиента температуры. В образце, на концах которого создана разность температур, возникает поток фононов, пропорциональный градиенту температуры. В результате столкновения электронов с фононами, возникает электронный поток, а в замкнутой цепи появляется ток. Если образец электрически разомкнут, то в нем возникает ЭДС. В отличии от акустоэлектрического эффекта электроны увлекаются потоком некогерентных фононов.
2) появления электронного потока в результате передачи импульса от фононов электронам в твердом проводнике. Эффект наблюдается в оптических и СВЧ областях в полупроводниках, в полуметаллах (Bi) и некоторых металлах. Эффект увлечения обнаруживается в виде тока и ЭДС. В полупроводниках наблюдается наряду с продольным и ток называемый поперечный эффект (появление тока, направленного перпендикулярно импульсу фонона).
Применение: в устройствах регистрации ИК-излучения, для измерения временных характеристик излучения импульсных лазеров [3].
Радиометрический эффект – возникновение силы отталкивания между двумя близко расположенными пластинами в разреженном газе, находящимися при разных температурах (Т1 > Т2). Холодная пластина со стороны, обращенной к горячей, бомбардируются молекулами газа, имеющими в среднем более высокую энергию, чем молекулы, бомбардирующие эту пластину с противоположной стороны. В результате между пластинами возникает сила отталкивания. При достаточно низких давлениях газа Р, когда средняя длина свободного пробега молекул больше расстояния между пластинами, сила отталкивания.
Применение: в радиометрических манометрах.
Пинч-эффект – эффект самосжатия разряда, свойство электрического токового канала в проводящей среде уменьшать свое сечения под действием собственного, порождаемого самим током, магнитного поля. Пинч-эффект сопровождается развитием различных плазменных неустойчивостей, ток то местное пережатие пинча, его изгибы и винтовые возмущения. Нарастание этих возмущений приходит чрезвычайно быстро и ведет к разрушению пинча.
Для мощных импульсных пинчей в разреженном действии характерно, что при некоторых условиях они становятся источниками нейтронного и рентгеновского излучений.
Применение: используется в системах управляемого термоядерного синтеза (УТС) [3].
Фотомагнитоэлектрический эффект – возникновение электрического поля в освещенном полупроводнике, помещенном в магнитное поле.
Электрическое поле перпендикулярно магнитному полю и потоку носителей тока (электронов проводимости), диффундирующих в полупроводнике в направлении от освещенной стороны полупроводника, где поглощенные фотоны образуют электронно-дырочные пары, к неосвещенной. Эффект наблюдается прирезкой неоднородной концентрации неосновных носителей тока, где достигается при сильном поглощении света. Открыт в 1933 г. советским физиком М. М. Носковым [3].
ЗАКЛЮЧЕНИЕ
Всякая техническая система, цель которой сбор информации, поступающей из внешней среды, а также обработка этой информации, кроме датчиков и микро-ЭВМ содержит другие составляющие, а именно входной терминал, выходной терминал и исполнительное устройство, на вход которого поступают уже обработанные ЭВМ-сигналы. Такая техническая система сходна по функциям отдельных элементов и по схеме поведения с человеком, где датчики соответствуют органам чувств, микропроцессор и память системы похожи на мозг человека, исполнительные устройства - это руки, ноги и тело.
Роль "Указателя" заключается в том, что он поможет вам увидеть и ощутить одну из важнейших тенденций развития технических систем -переход от исследования природы и практического воздействия на нее на макроуровне к исследованию к исследованию ее на микроуровне и связанный с этим переход от макротехнологии к микротехнологии.
Основное назначение данного учебного пособия – сформировать у студентов базовые знания по электроприводу для последующего углубленного изучения специальных дисциплин.
Предложенная методика изложения учебного материала по разделам учебного курса, дополненная практическими и лабораторными занятиями, а также вопросами для самоконтроля, дает студенту целостное представление о содержании и концепции изучаемого курса.
Помимо этого, студент имеет возможность самостоятельно освоить разделы учебной дисциплины. Изучая курс «Электрический привод» при таком комплексном подходе, студент, обучающийся по специальности «Электропривод и автоматика промышленных установок и технологических комплексов», впервые может осознанно определиться, насколько правильно была выбрана им специальность.
Имея на руках подобный материал по всем разделам учебной дисциплины, студент тщательнее готовится к практическим и лабораторным занятиям. Предварительно ознакомившись с теоретическим материалом по конспекту лекций, он будет значительно лучше воспринимать содержание лекции, а также заранее подготовит вопросы по интересующим его темам. Все это в конечном счете будет способствовать повышению качества обучения.
Дата добавления: 2018-05-09; просмотров: 571; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!