Фазовые переходы, агрегатные состояния веществ



 

При фазовых переходах первого рода скачком изменяются плотность веществ и энергия тела; очевидно, при фазовых переходах первого рода всегда выделяется или поглощается конечное количество тепловой энергии. При фазовых переходах второго рода плотность и энергия меняются непрерывно, а скачок испытывает такие величины, как теплоемкость, теплопроводность; фазовые переходы второго рода не сопровождаются поглощением или выделением энергии. Примером фазового перехода второго рода может служить переход жидкого гелия в сверхтекучее состояние, переход ферромагнетика в парамагнетик при точке Кюри, переупорядочение кристаллов сплавов и др. Характерным примером фазового перехода первого рода может служить переход вещества из одного агрегатного состояния в другое.

В физике рассматривают четыре агрегатных состояния: твердое, жидкое, газообразное и плазменное. При переходах из одного агрегатного состояния в другое, как уже отмечено выше, обязательно выделяется или поглощается тепло. Переход от более упорядоченных структур к менее упорядоченным требует притока тепла извне, при обратных переходах выделяется такое же количество тепла, которое поглощается при прямом переходе. Отметим, что, как правило, переход из одного агрегатного состояния в другое обычно имеет место при постоянной температуре, таким образом, фазовый переход является источником энергии или поглотителем тепла, работающим практически при постоянной температуре.

Нередко изменения агрегатного состояния вещества позволяет очень просто решать до этого почти неразрешимые технические задачи. Например, как заполнить послойно емкость смешивающимися между собой жидкостями? Можно предложить такой способ – первую жидкость, налитую в емкость, замораживают, следующую жидкость наливают на верхний слой замороженной жидкости, а затем последнюю размораживают.

При изменениях агрегатного состояния резко изменяются электрические характеристики вещества. Так, если металл в твердом или жидком виде – проводник, то пары металла –типичный диэлектрик.

Как отмечалось выше, перекристаллизация металла является фазовым переходом второго рода. В момент перекристаллизации возникает эффект сверхпластичности металла. В этот момент металл, ранее имевший прочную и сверхпрочную структуру, становится пластичным как глина. Но длится это явление считанные мгновения и протекает в очень узком, причем непостоянном интервале температур. Непосредственно зафиксировать момент, когда начинается фазовое превращение, невозможно, но известно, что при перестройки кристаллической решетки металл начинает переходить из парамагнитного состояния в ферромагнитное, что сопровождается резким изменением его магнитной проницаемости. Это явление также может быть использовано в технических системах.

У сталей существует еще один фазовый переход, идущий при очень низких температурах (ниже минус -60 °С), когда аустенит в стали (это структурная составляющая железоуглеродистых сплавов – твердый раствор углерода (до 2 %), названная по имени английского металлурга У. Робертса-Остена [1]) переходит в мартенсит (от имена немецкого металловеда А. Мартенса – структурная составляющая кристаллических твердых тел, возникающая в результате мартенситного превращения). И в этот момент наблюдается эффект сверхпластичности. Это значит, что вообще можно отказаться от горячей штамповки, совместив этот процесс в сверхпластичном состоянии с закалкой стали в жидком азоте.

Интересно, что мартенсит имеет меньшую плотность, чем аустенит. Если к изогнутой деформацией части детали приложить хотя бы кусок "сухого льда" (температура ‑67 °С), то обрабатываемый участок расширится, распрямив тем самым деталь. При этом, поскольку фазовый переход необратим, то самопроизвольного восстановления кривизны в дальнейшем не произойдет. Превращение 10 % аустенита в мартенсит вызывает увеличение 100 миллиметрового диаметра изделия на 130 мкм, а переход 40 % аустенита в мартенсит – 400 мкм. К плюсам метода надо добавить наличие эффекта вне зависимости от времени выдержки и тот факт, что обработку изогнутых деталей холодом, как и радиацией, можно вести в сборке.

Изменяется плотность при фазовых переходах и у других веществ (вода, олово), что позволяет использовать их для получения высоких давлений. При фазовых переходах второго рода также наблюдаются интересные изменения макроскопических свойств объектов (рассмотрены в п. 7.8). У хрома есть любопытная температурная точка 37 °С, в котором он претерпевает фазовый переход, при этом у него скачком изменяется модуль упругости. На этом свойстве основан ряд изобретений, например, изготовление первичного температурного сенсора из чистого хрома.

 


Дата добавления: 2018-05-09; просмотров: 592; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!