Нарушение структуры и функции клеточных органелл – ядра, рибосом, эндоплазматической сети, лизосом, митохондрий.



Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина.

Рибосомы. При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом – “мономеров”, уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

Эндоплазматическая сеть. При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментации.

Лизосомы. При патогенных воздействиях высвобождения и активация ферментов лизосом может привести к “самоперевариванию” (аутолизу) клетки. Выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическими разрывами их мембраны или значительным повышением проницаемости последних. Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), продуктов ПОЛ, токсинов и других агентов.

При действии патогенных факторов отмечается изменение общего числа митохондрий, а также структуры отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления)сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки. Ядро.

Аппарат Гольджи. Повреждение аппарата Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети. При этом нарушается выведение из клетки продуктов жизнедеятельности, обусловливающее расстройство ее функции в целом.

Цитоплазма представляет собой жидкую, слабовязкую среду, в которой находятся органеллы и включения клети. Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коакуляцию белка, образование “включений”, не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.

Механизмы защиты и адаптации клеток при повреждении. Приспособительные изменения функциональной активности клеток. Клеточная и субклеточная регенерация.

Адаптация- приспособление организма к условиям существования.Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.Первые реализуются в самих повреждённых клетках, Вторые- реализуются неповреждёнными клетками в процессе их взаимодействия с повреждёнными.

К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.

I. Компенсация нарушений процесса энергетического обеспечения клеток.

Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансфаразы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

II. Защита мембран и ферментов клеток. Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных и перекисных реакций ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обуславливает уменьшение степени внутриклеточного ацидооза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д. Альтерация клеток может сопровождаться дерепрессией генов и, как следствие, активацией процессов синтеза компонентов мембран (белков, липидов, углеводов) взамен поврежденных или утраченных.

III. Компенсация дисбаланса ионов и жидкости. Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных “насосов”, а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К+ , Na+ , Са2 + других путем уменьшения содержания в клетке ионов водорода. Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

IV. Устранение нарушений в генетической программе клеток. Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие “мелкомасштабные” биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

V. Компенсация расстройств механизмов регуляции внутриклеточных процессов. К такого рода реакциям относятся: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них. Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников – циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

VI. Снижение функциональной активности клеток. В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления функции пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций, репрессию активности отдельных гормонов. Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии.

VII. Регенерация- означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную (субклеточную) формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл – митохондрий, ядра, эндоплазматической сети и других вместо поврежденных или погибших.

VIII. Гипертрофия (hyper – чрезмерно, увеличение, trophe – питаю) представляет собой увеличение объема и массы структурных элементов, в частности клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.

IX. Гиперплазия (hyper – чрезмерно, plaseo – образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.

Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются в основном при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные.

Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения.

К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает ( или уменьшает степень) повреждения их клеток.

Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток.

Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток и они погибают.

Учение о конституции организма. Конституциональные типы: их классификация, различия и механизмы формирования. Значение конституции в патологии. Диатезы, их виды, значение в патологии (лимфатико-гипопластический, экссудативный, нервно-артритический).

Конституция - совокупность относительно устойчивых морфологических и функциональных свойств организма человека, обусловленных наследственностью (генотипом), продолжительными влияниями окружающей среды и определяющих своеобразие реактивных свойств организма.Основой конституции человека является его генотип. Основоположником учения о конституции считается Гиппократ, создавший первую классификацию конституциональных типов. Гиппократ разделил людей в зависимости от их темперамента, поведения в обществе на 4 группы:


-холерик - легко возбудимый, неуравновешенный, легко переходящий в состояние угнетения;

-меланхолик - неуверенный в себе, всегда неудовлетворенный;

-сангвиник - жизнерадостный, подвижный;

-флегматик - инертный, всегда спокойный, уравновешенный, застойный.

Учение И.М. Павлова о ведущей роли нервной системы в жизнедеятельности сложного организма открыло новую эпоху в развитии данной проблемы. На основании многолетней работы по выработке условных рефлексов И.П. Павлов создал классификацию типов высшей нервной деятельности животных и человека, в основу которой положены основные свойства нервных процессов (раздражительного и тормозного) - их сила, равновесие, подвижность. Были выделены 4 типа, соответствующие темпераментам, установленным Гиппократом:

-сильный, уравновешенный, подвижный (сангвиник)

-сильный, уравновешенный, инертный (флегматик);

-сильный, неуравновешенный (холерик);

-слабый (меланхолик).


По отношению первой и второй сигнальной систем для человека выделены дополнительно еще три типа: тип "художника" - с преимущественно развитой первой сигнальной системой; тип "мыслителя" - с преобладанием второй сигнальной системой и "средний". Преобладание первой или второй сигнальных систем может быть присуще любому темпераменту.

В настоящее время общепринятой в клинике является классификация М.В. Черноруцкого, которая делит людей на три типа - астеники, гиперстеники, нормостеники с учетом морфологических и функциональных особенностей, характера человека, склонностью к той или иной патологии. Так, люди с астеническим типом телосложения отличаются повышенной возбудимостью нервной системы, склонностью к птозу (опущению) внутренних органов, неврозам, гипотензии, туберкулезу, язвенной болезни желудка, в меньшей мере (по сравнению с другими типами) к развитию атеросклероза, ожирения, диабета. Нормостеники - (люди атлетического типа) энергичны, уверены в своих силах, у них отмечается склонность к заболеваниям верхних дыхательных путей, опорно-двигательного аппарата, невралгия, атеросклерозу коронарных артерий, чаще развивается инфаркт миокарда. Гиперстеники (пикники) - общительны, подвижны, практичны. У них преобладают процессы ассимиляции, функции половых желез и надпочечников обычно повышены, отмечается относительно более высокий уровень артериального давления. Они склонны к ожирению, диабету, атеросклерозу, гипертонической болезни, дисфункции желчного пузыря, желчно-каменной болезни.

Диатезы- крайние, пограничные с патологией варианты конституции (аномалии конституции). В настоящее время выделяют три основных вида диатезов как объективно существующих маргинальных типов реактивности:

-экссудативно-катаральный диатез, характеризующийся повышенной раздражительностью кожи и слизистых оболочек, склонностью к экзематозным появлениям на коже, зудящим волдырям, крапивницам, аллергическим реакциям немедленного типа, повышенным риском анафилактических реакций, гиперергическим течением воспаления, возникновением бронхиальной астмы, отеком Квинке, ложного крупа, наклонностью к атопической аллергии. В основе этих явлений лежит наследственная склонность к выработке антител типа реагинов;

-нервно-артретический диатез - состояние, характеризующееся повышенной возбудимостью, лабильностью нервновегетативной регуляции, сильным неуравновешенным возбудимым типом высшей нервной деятельности, высокой интенсивностью пуринового обмена и повышенным содержанием мочевой кислоты в крови, периодическим повышениям уровня кетоновых тел, предрасположением к дискинезиям желудочно-кишечного тракта, сахарного диабета, мигрени, невралгии, артритов, атеросклероза, подагры, хронической почечной недостаточности. Эти проявления связаны в значительной степени с накоплением уратов в организме, а также с кофеиноподобным действием на нервную и мышечную ткани мочевой кислоты, которая оказывается хронически действующим своеобразным "эндогенным допингом". Носители этого диатеза нередко проявляют незаурядные умственные способности.

-лимфатико-гипопластический диатез (statusthymico-lymphaticus) характеризуется гиперплазией тимиколимфатического аппарата и гипоплазией надпочечников, хромаффинной ткани, щитовидной железы, половых органов, сердца, аорты, гладкомышечных органов, пониженными адаптационными возможностями, малой устойчивостью к стрессам, легким развитием фазы истощения при стрессорных реакциях, что обусловлено пониженными функциональными возможностями надпочечников. Отмечается тимомегалия, увеличение миндалин, лимфоузлов, фолликулов языка, селезенки; аденоиды, лимфоцитоз, нейтропения. Серьезным осложнением этого диатеза является синдром внезапной смерти детей (СВСД) - "morsthymica" - тяжелый коллапс с остановкой дыхания и сердечной деятельности при энергичных процедурах, сильных раздражениях, наркозе или во сне, возникающий чаще всего в первые два года жизни. Способствуют СВСД низкий социально-экономический статус родителей, курение, и токсикомания у матерей. Большинство исследователей трактует СВСД как полиэтиологический синдром с участием значения statusthymico-lymphaticus.


Дата добавления: 2018-05-02; просмотров: 1594; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!