Декларативный смысл пролог-программ



 

В главе 1 мы уже видели, что пролог-программу можно понимать по-разному: с декларативной и процедурной точек зрения. В этом и следующем разделах мы рассмотрим более формальное определение декларативного и процедурного смыслов программ базисного Пролога. Но сначала давайте еще раз взглянем на различия между этими двумя семантиками.

Рассмотрим предложение

P :- Q, R.

где P, Q и R имеют синтаксис термов. Приведем некоторые способы декларативной интерпретации этого предложения:

P — истинно, если Q и R истинны.

Из Q и R следует P.

А вот два варианта его "процедурного" прочтения:

Чтобы решить задачу P, сначала реши подзадачу Q, а затем — подзадачу R.

Чтобы достичь P, сначала достигни Q, а затем R.

Таким образом, различие между "декларативным" и "процедурным" прочтениями заключается в том, что последнее определяет не только логические связи между головой предложения и целями в его теле, но еще и порядок , в котором эти цели обрабатываются.

Формализуем теперь декларативный смысл.

Декларативный смысл программы определяет, является ли данная цель истинной (достижимой) и, если да, при каких значениях переменных она достигается. Для точного определения декларативного смысла нам потребуется понятие конкретизации предложения. Конкретизацией предложения С называется результат подстановки в него на место каждой переменной некоторого терма. Вариантом предложения С называется такая конкретизация С, при которой каждая переменная заменена на другую переменную. Например, рассмотрим предложение:

имеетребенка( X) :- родитель( X, Y).

Приведем два варианта этого предложения:

имеетребенка( А) :- родитель( А, В).

имеетребенка( X1) :- родитель( X1, Х2).

Примеры конкретизаций этого же предложения:

имеетребенка( питер) :- родитель( питер, Z).

имеетребенка( барри) :- родитель( барри,

маленькая( каролина) ).

Пусть дана некоторая программа и цель G, тогда, в соответствии с декларативной семантикой, можно утверждать, что

 

Цель G истинна (т.е. достижима или логически следует из программы) тогда и только тогда, когда

(1) в программе существует предложение С, такое, что

(2) существует такая его (С) конкретизация I, что

(a) голова I совпадает с G и

(б) все цели в теле I истинны.

 

Это определение можно распространить на вопросы следующим образом. В общем случае вопрос к пролог-системе представляет собой список целей, разделенных запятыми. Список целей называется истинным (достижимым), если все цели в этом списке истинны (достижимы) при одинаковых конкретизациях переменных. Значения переменных получаются из наиболее общей конкретизации.

Таким образом, запятая между целями обозначает конъюнкцию целей: они все должны быть истинными. Однако в Прологе возможна и дизъюнкция целей: должна быть истинной, по крайней мере одна из целей. Дизъюнкция обозначается точкой с запятой. Например:

P :- Q; R.

читается так: P — истинно, если истинно Q или истинно R. То есть смысл такого предложения тот же, что и смысл следующей пары предложений:

P :- Q.

P :- R.

Запятая связывает (цели) сильнее, чем точка с запятой. Таким образом, предложение

P :- Q, R; S, T, U.

понимается как:

P :- ( Q, R); (S, T, U).

и имеет тот же смысл, что и два предложения

P :- Q, R.

P :- S, T, U.

 

Упражнения

 

2.6. Рассмотрим следующую программу:

f( 1, один).

f( s(1), два).

f( s(s(1)), три).

f( s(s(s(X))), N) :-

f(X, N).

Как пролог-система ответит на следующие вопросы? Там, где возможны несколько ответов, приведите по крайней мере два.

(a) ?- f( s( 1), A).

(b) ?- f( s(s(1)), два).

(c) ?- f( s(s(s(s(s(s(1)))))), С).

(d) ?- f( D, три).

2.7. В следующей программе говорится, что два человека являются родственниками, если

(a) один является предком другого, или

(b) у них есть общий предок, или

(c) у них есть общий потомок.

родственники( X, Y) :-

предок( X, Y).

 

родственники( X, Y) :-

предок( Y, X).

 

родственники( X, Y) :-

% X и Y имеют общего предка

предок( Z, X),

предок( Z, Y).

 

родственники( X, Y) :-

% X и Y имеют общего потомка

предок( X, Z),

предок( Y, Z).

Сможете ли вы сократить эту программу, используя запись с точками с запятой?

2.8. Перепишите следующую программу, не пользуясь точками с запятой.

преобразовать( Число, Слово) :-

Число = 1, Слово = один;

Число = 2, Слово = два;

Число = 3, Слово = три.

 

Процедурная семантика

 

Процедурная семантика определяет, как пролог-система отвечает на вопросы. Ответить на вопрос — это значит удовлетворить список целей. Этого можно добиться, приписав встречающимся переменным значения таким образом, чтобы цели логически следовали из программы. Можно сказать, что процедурная семантика Пролога — это процедура вычисления списка целей с учетом заданной программы. "Вычислить цели" это значит попытаться достичь их.

Назовем эту процедуру вычислить. Как показано на рис. 2.9, входом и выходом этой процедуры являются:

входом — программа и список целей,

выходом — признак успех/неуспех и подстановка переменных.

 

Рис. 2.9. Входы и выходы процедуры вычисления списка целей.

Смысл двух составляющих выхода такой:

(1) Признак успех/неуспех принимает значение "да", если цели достижимы, и "нет" — в противном случае. Будем говорить, что "да" сигнализирует об успешном завершении и "нет" — о неуспехе .

(2) Подстановка переменных порождается только в случае успешного завершения; в случае неуспеха подстановка отсутствует.

 

ПРОГРАММА

 

большой( медведь). % Предложение 1

большой( слон). % Предложение 2

маленький( кот). % Предложение 3

коричневый ( медведь). % Предложение 4

черный ( кот). % Предложение 5

серый( слон). % Предложение 6

 

темный( Z) :- % Предложение 7:

черный( Z). % любой черный

% объект является темным

темный( Z) :- % Предложение 8:

коричневый( Z). % Любой коричневый

% объект является темным

 

ВОПРОС

 

?- темный( X), большой( X) % Кто одновременно темный

% и большой?

 

ШАГИ ВЫЧИСЛЕНИЯ

 

(1) Исходный список целевых утверждений:

темный( X), большой( X).

(2) Просмотр всей программы от начала к концу и поиск предложения, у которого голова сопоставима с первым целевым утверждением

темный( X).

Найдена формула 7:

темный( Z) :- черный( Z).

Замена первого целевого утверждения конкретизированным телом предложения 7 — порождение нового списка целевых утверждений.

черный( X), большой( X)

(3) Просмотр программы для нахождения предложения, сопоставимого с черный( X). Найдено предложение 5: черный ( кот). У этого предложения нет тела, поэтому список целей при соответствующей конкретизации сокращается до

большой( кот)

(4) Просмотр программы в поисках цели большой( кот). Ни одно предложение не найдено. Поэтому происходит возврат к шагу (3) и отмена конкретизации X = кот. Список целей теперь снова

черный( X), большой( X)

Продолжение просмотра программы ниже предложения 5. Ни одно предложение не найдено. Поэтому возврат к шагу (2) и продолжение просмотра ниже предложения 7. Найдено предложение (8):

темный( Z) :- коричневый( Z).

Замена первой цели в списке на коричневый( X), что дает

коричневый( X), большой( X)

(5) Просмотр программы для обнаружения предложения, сопоставимого коричневый( X). Найдено предложение коричневый( медведь). У этого предложения нет тела, поэтому список целей уменьшается до

большой( медведь)

(6) Просмотр программы и обнаружение предложения большой( медведь). У него нет тела, поэтому список целей становится пустым. Это указывает на успешное завершение, а соответствующая конкретизация переменных такова:

Рис. 2.10. Пример, иллюстрирующий процедурную семантику Пролога: шаги вычислений, выполняемых процедурой вычислить.

 

В главе 1 в разд. "Как пролог-система отвечает на вопросы" мы уже фактически рассмотрели, что делает процедура вычислить. В оставшейся части данного раздела приводится несколько более формальное и систематическое описание этого процесса, которое можно пропустить без серьезного ущерба для понимания остального материала книги.

Конкретные операции, выполняемые в процессе вычисления целевых утверждений, показаны на рис. 2.10. Возможно, следует изучить этот рисунок прежде, чем знакомиться с последующим общим описанием.

Чтобы вычислить список целевых утверждений

G1, G2, …, Gm

процедура вычислить делает следующее:

 

• Если список целей пуст - завершает работу успешно .

• Если список целей не пуст, продолжает работу, выполняя (описанную далее) операцию 'ПРОСМОТР'.

ПРОСМОТР : Просматривает предложения программы от начала к концу до обнаружения первого предложения С, такого, что голова С сопоставима с первой целью G1. Если такого предложения обнаружить не удается, то работа заканчивается неуспехом .

Если С найдено и имеет вид

H :- B1, ..., Вn.

то переменные в С переименовываются, чтобы получить такой вариант С' предложения С, в котором нет общих переменных со списком G1, …, Gm. Пусть С' — это

Н' :- B1', ..., Вn'.

Сопоставляется G1 с H'; пусть S — результирующая конкретизация переменных. В списке целей G1, G2, …, Gm, цель G1 заменяется на список В1', …, Вn', что порождает новый список целей:

В1', …, Вn', G2, …, Gm

(Заметим, что, если С — факт, тогда n=0, и в этом случае новый список целей оказывается короче, нежели исходный; такое уменьшение списка целей может в определенных случаях превратить его в пустой, а следовательно, — привести к успешному завершению.)

Переменные в новом списке целей заменяются новыми значениями, как это предписывает конкретизация S, что порождает еще один список целей

В1'', …, Вn", G2', …, Gm'

• Вычисляет (используя рекурсивно ту же самую процедуру) этот новый список целей. Если его вычисление завершается успешно, то и вычисление исходного списка целей тоже завершается успешно. Если же его вычисление порождает неуспех, тогда новый список целей отбрасывается и происходит возврат к просмотру программы. Этот просмотр продолжается, начиная с предложения, непосредственно следующего за предложением С (С — предложение, использовавшееся последним) и делается попытка достичь успешного завершения с помощью другого предложения.

 

Более компактная запись этой процедуры в обозначениях, близких к Паскалю, приведена на рис. 2.11.

Здесь следует сделать несколько дополнительных замечаний, касающихся процедуры вычислить в том виде, в котором она приводится. Во-первых, в ней явно не указано, как порождается окончательная результирующая конкретизация переменных. Речь идет о конкретизации S, которая приводит к успешному завершению и которая, возможно, уточнялась последующими конкретизациями во время вложенных рекурсивных вызовов вычислить.

procedure вычислить (Прогр, СписокЦелей, Успех)

 

Входные параметры:

Прогр: список предложений

СписокЦелей: список целей

 

Выходной параметр:

Успех: истинностное значение; Успех принимает значение

истина, если список целевых утверждений

(их конъюнкция) истиннен с точки зрения Прогр 

 

Локальные переменные:

Цель: цель

ДругиеЦели : список целей

Достигнуты: истинностное значение

Сопоставились: истинностное значение

Конкрет: конкретизация переменных

H, Н', B1, B1', …, Вn, Вn': цели

 

Вспомогательные функции:

пycтой( L): возвращает истину, если L — пустой список

голoвa( L): возвращает первый элемент списка L

хвост( L): возвращает остальную часть списка L

конкат( L1, L2): создает конкатенацию списков — присоединяет

список L2 к концу списка L1

сопоставление( T1, T2, Сопоставились, Конкрет): пытается

сопоставить термы Т1 и T2; если они сопоставимы, то

Сопоставились — истина, а Конкрет представляет

собой конкретизацию переменных

подставить( Конкрет, Цели): производит подстановку переменных

в Цели согласно Конкрет 

 

Begin

if пустой( СписокЦелей) then Успех  : = истина 

else 

Begin

Цель : = голова( СписокЦелей) ;

ДругиеЦели : = хвост( СписокЦелей) ;

Достигнута : = ложь; 

while not Достигнута and 

"в программе есть еще предложения" do 

begin 

Пусть следующее предложение в Прогр есть 

H :- B1, …, Вn.

Создать вариант этого предложения

Н' :- В1', …, Вn'.

сопоставление( Цель, Н',

Сопоставились, Конкрет)

if Сопоставились then 

begin 

НовыеЦели :=

конкат(  [В1', …, Вn' ], Другие Цели );

НовыеЦели : =

подставить( Конкрет, НовыеЦели); 

вычислить( Прогр, НовыеЦели, Достигнуты)

end 

end;

Успех  : = Достигнуты 

end 

end;

Рис. 2.11. Вычисление целевых утверждений Пролога.

 

Всякий раз, как рекурсивный вызов процедуры вычислить приводят к неуспеху, процесс вычислений возвращается к ПРОСМОТРУ и продолжается с того предложения С, которое использовалось последним. Поскольку применение предложения С не привело к успешному завершению, пролог-система должна для продолжения вычислений попробовать альтернативное предложение. В действительности система аннулирует результаты части вычислений, приведших к неуспеху, и осуществляет возврат в ту точку (предложение С), в которой эта неуспешная ветвь начиналась. Когда процедура осуществляет возврат в некоторую точку, все конкретизации переменных, сделанные после этой точки, аннулируются. Такой порядок обеспечивает систематическую проверку пролог-системой всех возможных альтернативных путей вычисления до тех пор, пока не будет найден путь, ведущий к успеху, или же до тех пор, пока не окажется, что все пути приводят к неуспеху.

Мы уже знаем, что даже после успешного завершения пользователь может заставить систему совершить возврат для поиска новых решений. В нашем описании процедуры вычислить эта деталь была опущена.

Конечно, в настоящих реализациях Пролога в процедуру вычислить добавлены и еще некоторые усовершенствования. Одно из них — сокращение работы по просмотрам программы с целью повышения эффективности. Поэтому на практике пролог-система не просматривает все предложения программы, а вместо этого рассматривает только те из них, которые касаются текущего целевого утверждения.

 

Упражнение

 

2.9. Рассмотрите программу на рис. 2.10 и по типу того, как это сделано на рис. 2.10, проследите процесс вычисления пролог-системой вопроса

?- большой( X), темный( X).

Сравните свое описание шагов вычисления с описанием на рис. 2.10, где вычислялся, по существу, тот же вопрос, но с другой последовательностью целей:

?- темный( X), большой( X).

В каком из этих двух случаев системе приходится производить бо льшую работу для нахождения ответа?

 

Пример: обезьяна и банан

 

Задача об обезьяне и банане часто используется в качестве простого примера задачи из области искусственного интеллекта. Наша пролог-программа, способная ее решить, показывает, как механизмы сопоставления и автоматических возвратов могут применяться для подобных целей. Мы сначала составим программу, не принимая во внимание процедурную семантику, а затем детально изучим ее процедурное поведение. Программа будет компактной и наглядной.

Рассмотрим следующий вариант данной задачи. Возле двери комнаты стоит обезьяна. В середине этой комнаты к потолку подвешен банан. Обезьяна голодна и хочет съесть банан, однако она не может дотянуться до него, находясь на полу. Около окна этой же комнаты на полу лежит ящик, которым обезьяна может воспользоваться. Обезьяна может предпринимать следующие действия: ходить по полу, залезать на ящик, двигать ящик (если она уже находится около него) и схватить банан, если она стоит на ящике прямо под бананом. Может ли обезьяна добраться до банана?

Одна из важных проблем при программировании состоит в выборе (адекватного) представления решаемой задачи в терминах понятий используемого языка программирования. В нашем случае мы можем считать, что "обезьяний мир" всегда находится в некотором состоянии , и оно может изменяться со временем. Текущее состояние определяется взаиморасположением объектов. Например, исходное состояние мира определяется так:

(1) Обезьяна у двери.

(2) Обезьяна на полу.

(3) Ящик у окна.

(4) Обезьяна не имеет банана.

Удобно объединить все эти четыре информационных фрагмента в один структурный объект. Давайте в качестве такого объединяющего функтора выберем слово "состояние". На рис. 2.12 в виде структурного объекта изображено исходное состояние.

Нашу задачу можно рассматривать как игру для одного игрока. Давайте, формализуем правила этой игры. Первое, целью игры является ситуация, в которой обезьяна имеет банан, т.е. любое состояние, у которого в качестве четвертой компоненты стоит "имеет":

состояние( _, _, _, имеет)

Второе, каковы разрешенные ходы, переводящие мир из одного состояния в другое? Существуют четыре типа ходов:

(1) схватить банан,

(2) залезть на ящик,

(3) подвинуть ящик,

(4) перейти в другое место.

 

Рис. 2.12. Исходное состояние обезьяньего мира, представленное в виде структурного объекта. Его четыре компоненты суть горизонтальная позиция обезьяны, вертикальная позиция обезьяны, позиция ящика, наличие или отсутствие у обезьяны банана.

Не всякий ход допустим при всех возможных состояниях мира. Например, ход "схватить" допустим, только если обезьяна стоит на ящике прямо под бананом (т.е. в середине комнаты) и еще не имеет банана. Эти правила можно формализовать в Прологе в виде трехместного отношения ход:

ход( Состояние1, М, Состояние2)

Три аргумента этого отношения определяют ход, следующим образом:

Состояние1 --------> Состояние2

М

Состояние1 это состояние до хода, М — выполняемый ход, и Состояние2 — состояние после хода.

Ход "схватить", вместе с необходимыми ограничениями на состояние перед этим ходом, можно выразить такой формулой:

ход( состояние( середина, наящике, середина, неимеет),

% Перед ходом

схватить, % Ход

состояние( середина, наящике, середина, имеет) ).

% После хода

В этом факте говорится о том, что после хода у обезьяны уже есть банан и что она осталась на ящике в середине комнаты.

Таким же способом можно выразить и тот факт, что обезьяна, находясь на полу, может перейти из любой горизонтальной позиции P1 в любую позицию Р2. Обезьяна может это сделать независимо от позиции ящика, а также независимо от того, есть у нее банан или нет. Все это можно записать в виде следующего прологовского факта:

ход( состояние( P1, наполу, В, H),

перейти( P1, Р2), % Перейти из P1 в Р2

состояние( Р2, наполу, В, H) ).

Заметим, что в этом предложении делается много утверждений и, в частности:

• выполненный ход состоял в том, чтобы "перейти из некоторой позиции P1 в некоторую позицию Р2";

• обезьяна находится на полу, как до, так и после хода;

• ящик находится в некоторой точке В, которая осталась неизменной после хода;

• состояние "имеет банан" остается неизменным после хода.

 

Рис. 2.13. Рекурсивная формулировка отношения можетзавладеть.

Данное предложение на самом деле определяет все множество возможных ходов указанного типа, так как оно применимо к любой ситуации, сопоставимой с состоянием, имеющим место перед входом. Поэтому такое предложение иногда называют схемой хода. Благодаря понятию переменной, имеющемуся в Прологе, такие схемы легко на нем запрограммировать.

Два других типа ходов: "подвинуть" и "залезть" — легко определить аналогичным способом.

Главный вопрос, на который должна ответить наша программа, это вопрос: "Может ли обезьяна, находясь в некотором начальном состоянии S, завладеть бананом?" Его можно сформулировать в виде предиката

можетзавладеть( S)

где аргумент S — состояние обезьяньего мира. Программа для можетзавладеть может основываться на двух наблюдениях:

(1) Для любого состояния S, в которой обезьяна уже имеет банан, предикат можетзавладеть должен, конечно, быть истинным; в этом случае никаких ходов не требуется. Вот соответствующий прологовский факт:

можетзавладеть( состояние( _, _, _, имеет) ).

(2) В остальных случаях требуется один или более ходов. Обезьяна может завладеть бананом в любом состоянии S1, если для него существует ход из состояния P1 в некоторое состояние S2, такое, что, попав в него, обезьяна уже сможет завладеть бананом (за нуль или более ходов). Этот принцип показан на рис. 2.13. Прологовская формула, соответствующая этому правилу, такова:

можетзавладеть( S1) :-

ход( S1, М, S2),

можетзавладеть( S2).

Теперь мы полностью завершили нашу программу, показанную на рис. 2.14.

Формулировка можетзавладеть рекурсивна и совершенно аналогична формулировке отношения предок из гл. 1 (ср. рис. 2.13 и 1.7). Этот принцип используется в Прологе повсеместно.

Мы создали нашу программу "непроцедурным" способом. Давайте теперь изучим ее процедурное поведение, рассмотрев следующий вопрос к программе:

?- можетзавладеть( состояние( удвери, наполу, уокна, неимеет) ).

Ответом пролог-системы будет "да". Процесс, выполняемый ею при этом, обрабатывает, в соответствии с процедурной семантикой Пролога, последовательность списков целей. Для этого требуется некоторый перебор ходов, для отыскания верного из нескольких альтернативных. В некоторых точках при таком переборе будет сделан неверный ход, ведущий в тупиковую ветвь процесса вычислений. На этом этапе автоматический возврат позволит исправить положение. На рис. 2.15 изображен процесс перебора.

% Разрешенные ходы

ход( состояние( середина, на ящике, середина, неимеет),

схватить, % Схватить банан

состояние( середина, наящике, середина, имеет)).

 

ход( состояние( P, наполу, P, H),

залезть, % Залезть на ящик

состояние( P, наящике, P, H) ).

 

ход( состояние( P1, наполу, P1, H),

подвинуть( P1, Р2), % Подвинуть ящик с P1 на Р2

состояние( Р2, наполу, Р2, H) ).

 

ход( состояние( P1, наполу, В, H),

перейти( P1, Р2), % Перейти с P1 на Р2

состояние( Р2, наполу, В, H) ).

 

% можетзавладеть(Состояние): обезьяна может завладеть

% бананом, находясь в состоянии Состояние

можетзавладеть( состояние( -, -, -, имеет) ).

 

% может 1: обезьяна уже его имеет

можетзавладеть( Состояние1) :-

% может 2: Сделать что-нибудь, чтобы завладеть им

ход( Состояние1, Ход, Состояние2),

% сделать что-нибудь

можетзавладеть( Состояние2).

% теперь может завладеть

Рис. 2.14. Программа для задачи об обезьяне и банане.

 

Для ответа на наш вопрос системе пришлось сделать лишь один возврат. Верная последовательность ходов была найдена почти сразу. Причина такой эффективности программы кроется в том порядке, в котором в ней расположены предложения, касающиеся отношения ход. В нашем случае этот порядок (к счастью) оказался весьма подходящим. Однако возможен и менее удачный порядок. По правилам игры обезьяна могла бы с легкостью ходить туда-сюда, даже не касаясь ящика, или бесцельно двигать ящик в разные стороны. Как будет видно из следующего раздела, более тщательное исследование обнаруживает, что порядок предложений в нашей программе является, на самом деле, критическим моментом для успешного решения задачи.

 

Рис. 2.15. Поиск банана обезьяной. Перебор начинается в верхнем узле и распространяется вниз, как показано. Альтернативные ходы перебираются слева направо. Возврат произошел только один раз.

 

Порядок предложений и целей

 

Опасность бесконечного цикла

 

Рассмотрим следующее предложение:

p :- p.

В нем говорится: "p истинно, если p истинно". С точки зрения декларативного смысла это совершенно корректно, однако в процедурном смысле оно бесполезно. Более того, для пролог-системы такое предложение может породить серьезную проблему. Рассмотрим вопрос:

?- p.

При использовании вышеприведенного предложения цель p будет заменена на ту же самую цель p; она в свою очередь будет заменена снова на p и т.д. В этом случае система войдет в бесконечный цикл, не замечая, что никакого продвижения в вычислениях не происходит.

Данный пример демонстрирует простой способ ввести пролог-систему в бесконечный цикл. Однако подобное зацикливание могло встретиться и в некоторых наших предыдущих программах, если бы мы изменили порядок предложений, или же порядок целей в них. Будет полезно рассмотреть несколько примеров.

В программе об обезьяне и банане предложения, касающиеся отношения ход, были упорядочены следующим образом: схватить, залезть, подвинуть, перейти (возможно, для полноты следует добавить еще "слезть"). В этих предложениях говорится, что можно схватить, можно залезть и т.д. В соответствии с процедурной семантикой Пролога порядок предложений указывает на то, что обезьяна предпочитает схватывание залезанию, залезание — передвиганию и т.д. Такой порядок предпочтений на самом деле помогает обезьяне решить задачу. Но что могло случиться. если бы этот порядок был другим? Предположим, что предложение с "перейти" оказалось бы первым. Процесс вычисления нашей исходной цели из предыдущего раздела

?- можетзавладеть( состояние( удвери, наполу, уокна, неимеет) ).

протекал бы на этот раз так. Первые четыре списка целей (с соответствующим образом переименованными переменными) остались бы такими же, как и раньше:

(1) можетзавладеть( состояние( удвери, наполу, уокна, неимеет) ).

Применение второго предложения из можетзавладеть ("может2") породило бы

(2) ход( состояние( удвери, наполу, уокна, неимеет), М', S2'),

можетзавладеть( S2')

С помощью хода перейти( уокна, Р2') получилось бы

(3) можетзавладеть( состояние( Р2', наполу, уокна, неимеет) )

Повторное использование предложения "может2" превратило бы список целей в

(4) ход( состояние(Р2', наполу, уокна, неимеет), М'', S2''),

можетзавладеть( S2'')

С этого момента начались бы отличия. Первым предложением, голова которого сопоставима с первой целью из этого списка, было бы теперь "перейти" (а не "залезть", как раньше). Конкретизация стала бы следующей:

S2'' = состояние( Р2'', наполу, уокна, неимеет).

Поэтому список целей стал бы таким:

(5) можетзавладеть( состояние( Р2'', наполу, уокна, неимеет) )

Применение предложения "может2" дало бы

(6) ход( cocтояниe( P2'', наполу, yoкнa, неимeeт), M''', S2'''),

можетзавладеть( S2''')

Снова первый было бы попробовано "перейти" и получилось бы

(7) можетзавладеть( состояние( Р2''', наполу, уокна, неимеет) )

Сравним теперь цели (3), (5) и (7). Они похожи и отличаются лишь одной переменной, которая по очереди имела имена Р', Р'' и P'''. Как мы знаем, успешность цели не зависит от конкретных имен переменных в ней. Это означает, что, начиная со списка целей (3), процесс вычислений никуда не продвинулся. Фактически мы замечаем, что по очереди многократно используются одни и те же два предложения: "может2" и "перейти". Обезьяна перемещается, даже не пытаясь воспользоваться ящиком. Поскольку продвижения нет, такая ситуация продолжалась бы (теоретически) бесконечно: пролог-система не сумела бы осознать, что работать в этой направлении нет смысла.

Данный пример показывает, как пролог-система может пытаться решить задачу таким способом, при котором решение никогда не будет достигнуто, хотя оно существует. Такая ситуация не является редкостью при программировании на Прологе. Да и при программировании на других языках бесконечные циклы не такая уж редкость. Что действительно необычно при сравнении Пролога с другими языками, так это то, что декларативная семантика пролог-программы может быть правильной, но в то же самое время ее процедурная семантика может быть ошибочной в том смысле, что с помощью такой программы нельзя получить правильный ответ на вопрос. В таких случаях система не способна достичь цели потому, что она пытается добраться до ответа, но выбирает при этом неверный путь.

Теперь уместно спросить: "Не можем ли мы внести какое-либо более существенное изменение в нашу программу, так чтобы полностью исключить опасность зацикливания? Или же нам всегда придется рассчитывать на удачный порядок предложений и целей?" Как оказывается, программы, в особенности большие, были бы чересчур ненадежными, если бы можно было рассчитывать лишь на некоторый удачный порядок. Существует несколько других методов, позволяющих избежать зацикливания и являющихся более общими и надежными, чем сам по себе метод упорядочивания. Такие методы будут систематически использоваться дальше в книге, в особенности в тех главах, в которых пойдет речь о нахождении путей (в графах), о решения интеллектуальных задач и о переборе.

 


Дата добавления: 2018-05-01; просмотров: 555; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!