Холостой ход и рабочий режим асинхронного двигателя.



При работе АД без нагрузки на валу скольжение ротора близко к нулю и величина ЭДС, а значит и ток в роторе незначителен. АД представляет для сети почти чисто индуктивную нагрузку. Поэтому работа двигателя без нагрузки нежелательна, так как понижает cosφ сети.

Если на валу двигателя появляется тормозной момент (рабочий ход), то скольжение увеличится, и величина ЭДС и ток в роторе возрастет. Возрастет и ток в обмотке статора, однако он будет компенсировать размагничивающее действие намагничивающей силы обмотки ротора. Общий магнитный поток создается действием обеих намагничивающих сил, и их геометрическая сумма равна намагничивающей силе холостого хода. Таким образом, магнитный поток АД не зависит от нагрузки и остается всегда постоянным. Возрастание токов при увеличении нагрузки приводит к увеличению потребляемой мощности из сети и наоборот. В рабочем режиме АД представляет для сети активно-индуктивную нагрузку, характер которой зависит от величины тормозного момента на валу двигателя.

Вращающий момент асинхронного двигателя. возникает в результате взаимодействия тока ротора с магнитным потоком статора.

Мвр = сФI2s cos φ2s

и зависит от скольжения, так как и cos φs и ток зависят от скольжения. Максимальный вращающий момент, определяющий перегрузочную способность двигателя, обычно превосходит номинальный в 2 – 3 раза. При дальнейшем увеличении нагрузки и скольжения момент уменьшается и устойчивая работа двигателя невозможна.

При более подробном анализе можно доказать, что Мвр ≡ U2. Это значит, что АД очень чувствительны к изменению напряжения сети. При незначительном уменьшении напряжения сети асинхронный двигатель может остановиться под током, а затем сгореть.

Электромагнитный момент и механические характеристики АД

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент М пропорционален электромагнитной мощности:

М = Рэм/ω1,                  (4.1)

где                                       (4.2)

— угловая синхронная скорость вращения.

Подставив в (4.1) значение электромагнитной мощности получим

                 (4.3)

т. е. электромагнитный момент асинхронного двигателя пропорционален мощности электрических потерь в обмотке ротора.

Если значение тока ротора подставить в (4.3), то получим формулу электромагнитного момента асинхронной машины (Н-м):

  (4.4)

Параметры схемы замещения асинхронной машины r1, r'2 , х1 и х'2, входящие в выражение (4.4), являются постоянными, так как их значения при изменениях нагрузки машины остается практически неизменными. Также постоянными можно считать напряжение на обмотке фазы статора U1 и частоту f1. В выражении момента М единственная переменная величина — скольжение s, которое для различных режимов работы асинхронной машины может принимать разные значения в диапазоне от + ∞ до – ∞.

Рассмотрим зависимость момента от скольжения M=f(s) при U1 = const, f1 = const и постоянных параметрах схемы замещения. Эту зависимость принято называть механической характеристикой асинхронной машины. Анализ выражения (4.4), представляющего собой аналитическое выражение механической характеристики M=f(s), показывает, что при значениях скольжения s = 0 и s = ∞ электромагнитный момент М = 0. Из этого следует, что механическая характеристика M=f(s) имеет максимум.

Для определения величины критического скольжения sкр, соответствующего максимальному моменту, необходимо взять первую производную от (4.4) и приравнять ее нулю: dм/ds = 0. В результате

             (4.5)

Подставив значение критического скольжения (по 4.5) в выражение электромагнитного момента (4.4), после ряда преобразований получим выражение максимального момента (Н-м):

   (4.6)

В (4.5) и (4.6) знак плюс соответствует двигательному, а знак минус — генераторному режиму работы асинхронной машины.

Для асинхронных машин общего назначения активное сопротивление обмотки статора r1 намного меньше суммы индуктивных сопротивлений: r1 « (x1+ х'2). Поэтому, пренебрегая величиной r1, получим упрощенные выражения критического скольжения

sкр ≈ ± r'2/(xl+x'2),           (4.7)

и максимального момента (Н-м)

       (4.8)

Анализ выражения (4.6) показывает, что максимальный момент асинхронной машины в генераторном режиме больше, чем в двигательном (Ммах.г > Ммах.д). На рис. 4.6. показана механическая характеристика асинхронной машины M=f(s) при U1 = const. На этой характеристике указаны зоны, соответствующие различным режимам работы: двигательный режим (0 < s ≤ 1), когда электромагнитный момент М является вращающим; генераторный режим (– ∞ <s < 0)и тормозной режим противовключением (1 < s < + ∞), когда электромагнитный момент М является тормозящим.

Из (4.4) следует, что электромагнитный момент асинхронного двигателя пропорционален квадрату напряжения сети: .

Это в значительной степени отражается на эксплуатационных свойствах двигателя: доже небольшое снижение напряжения сети вызывает заметное уменьшение вращающего момента асинхронного двигателя. Например, при уменьшении напряжения сети на 10% относительно номинального (U1 = 0,9Uном) электромагнитный момент двигателя уменьшается на 19%:

M' = 0,92M = 0,81M,

где М— момент при номинальном напряжении сети, а M'—момент при пониженном напряжении.

Рис. 4.6. Зависимость режимов работы асинхронной машины от скольжения

 

Для анализа работы асинхронного двигателя удобнее воспользоваться механической характеристикой M=f(s), представленной на рис. 4.7.

Рис 4.7. Зависимость электромагнитного момента асинхронного двигателя от скольжения

 

При включении двигателя в сеть магнитное поле статора, не обладая инерцией, сразу же начинает вращение с синхронной частотой n1, в то же время ротор двигателя под влиянием сил инерции в начальный момент пуска остается неподвижным (n2 = 0) и скольжение s = 1.

Подставив в (4.4) скольжение s = 1, получим выражение пускового момента асинхронного двигателя (Н-м):

          (4.9)

 

Под действием этого момента начинается вращение ротора двигателя, при этом скольжение уменьшается, а вращающий момент возрастает в соответствии с характеристикой М = f(s). При критическом скольжении sкр, момент достигает максимального значения Ммах

С дальнейшим нарастанием частоты вращения (уменьшением скольжения) момент М начинает убывать, пока не достигнет установившегося значения, равного сумме противодействующих моментов, приложенных к ротору двигателя: момента х.х. M0 и полезного нагрузочного момента (момента на валу двигателя) М2, т. е.

 

М = М0 + М2 = Мст               (4.10)

 

Следует иметь в виду, что при скольжениях, близких к единице (пусковой режим двигателя), параметры схемы замещения асинхронного двигателя заметно изменяют свои значения. Объясняется это в основном двумя факторами: усилением магнитного насыщения зубцовых слоев статора и ротора, что ведет к уменьшению индуктивных сопротивлений рассеяния х1 и х'2, и эффектом вытеснения тока в стержнях ротора, что ведет к увеличению активного сопротивления обмотки ротора r'2. Поэтому параметры схемы замещения асинхронного двигателя, используемые при расчете электромагнитного момента по (4.4), (4.6) и (4.8

Статический момент М равен сумме противодействующих моментов при равномерном вращении ротора (n2 = const). Допустим, что противодействующий момент на валу двигателя М2 соответствует номинальной нагрузке двигателя. В этом случае установившийся режим работы двигателя определится точкой на механической характеристике с координатами М = Мном и s = sном

где Мном и sном — номинальные значения электромагнитного момента и скольжения.

Из анализа механической характеристики также следует, что устойчивая работа асинхронного двигателя возможна при скольжениях меньше критического (s < .sкр,), т. е. на участке ОА механической характеристики. Дело в том, что именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента. Так, если двигатель работал в номинальном режиме (Мном; sном), то имело место равенство моментов: Мном = М0 + М2. Если произошло увеличение нагрузочного момента М2 до значения M'2, то равенство моментов нарушится, т. е. Мном < М0 + M'2, и частота вращения ротора начнет убывать (скольжение будет увеличиваться). Это приведет к росту электромагнитного момента до значения М' = М0 + M'2 (точка В), после чего режим работы двигателя вновь станет установившимся. Если же при работе двигателя в номинальном режиме произойдет уменьшение нагрузочного момента до значения М''2 , то равенство моментов вновь нарушится, но теперь вращающий момент окажется больше суммы противодействующих: Мном > М0 + М''2 . Частота вращения ротора начнет возрастать (скольжение будет уменьшаться), и это приведет к уменьшению электромагнитного момента М до значения М" = М0 + М"2 (точка С); устойчивый режим работы будет вновь восстановлен, но уже при других значениях М и s.

Работа асинхронного двигателя становится неустойчивой при скольжениях s ≥ sкр. Так, если электромагнитный момент двигателя М = Ммах, а скольжение s = sкр, то даже незначительное увеличение нагрузочного момента М2, вызвав увеличение скольжения s, приведет к уменьшению электромагнитного момента М. За этим последует дальнейшее увеличение скольжения и т. д., пока скольжение не достигнет значения s = 1, т. е. пока ротор двигателя не остановится.

Таким образом, при достижении электромагнитным моментом максимального значения наступает предел устойчивой работы асинхронного двигателя. Следовательно, для устойчивой работы двигателя необходимо, чтобы сумма нагрузочных моментов, действующих на ротор, была меньше максимального момента: Мст =(М0 + М2)< Ммах. Но чтобы работа асинхронного двигателя была надежной и чтобы случайные кратковременные перегрузки не вызывали остановок двигателя, необходимо, чтобы он обладал перегрузочной способностью. Перегрузочная способность двигателя λ. определяется отношением максимального момента Ммах к номинальному Мном. Для асинхронных двигателей общего назначения перегрузочная способность составляет λ = Mmaх/Mном = 1,7÷2,5.

Следует также обратить внимание на то, что работа двигателя при скольжении s < sкр, т. е. на рабочем участке механической характеристики, является наиболее экономичной, так как она соответствует малым значениям скольжения, а следовательно, и меньшим значениям электрических потерь в обмотке ротора Рэ2 = sРэм


Дата добавления: 2018-04-15; просмотров: 971; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!