Вопрос 34. Приведите порядок расчета состава строительного раствора. Какими способами задается состав раствора на практике?



 

Ответ: Строительные раст воры представляют собой смеси из вяжущего вещества, воды и мелкого заполнителя, приобретающие в результате процесса твердения камнеподобную структуру. Состав строительного раствора выбирают исходя из заданной марки раствора и степени подвижности растворной массы, необходимой по условиям производства работ.

СП 82-101-98

5.8 Ориентировочные расходы вяжущего на 1 м3 песка и на 1 м3 раствора

приведены в таблице 4, где Rв = Мв /1000.

5.9 Для получения заданной марки раствора в случае применения вяжущих,

отличающихся маркой М от приведенных в 5.8 (таблица 4), расход вяжущего на

1 м3 песка определяется по формуле

                          Rв Qв

                    Qвф = ──── 1000,

                           Мвф

                                

 

где Q - расход вяжущего с активностью по таблице 4 на 1 м3 песка, кг;

в

Q - расход вяжущего с иной активностью;

вф

R Q - принимается по таблице 4 для данной марки раствора.

в в

 

Таблица 4

┌─────────────────┬──────────┬──────────┬──────────┬────────────────────┐

│ Вяжущие │ Марка │ Марка │Показатель│Расход вяжущего, кг │

│            │ раствора │ вяжущего │ R Q ├─────────┬──────────┤

│            │ М │ М │ в в │ на 1 м3 │ на 1 м3 │

│            │ р │ в │     │ песка │ раствора │

├─────────────────┼──────────┼──────────┼──────────┼─────────┼──────────┤

│Вяжущие по  │ 300 │ 500 │ 230 │ 460 │ 510 │

│            │     │     │     │    │     │

│ГОСТ 10178; │     │ 400 │     │ 575 │ 600 │

│            │     │     │     │    │     │

│ГОСТ 25328; │ 200 │ 500 │ 180 │ 360 │ 410 │

│            │     │     │     │    │     │

│ГОСТ 22266  │     │ 400 │     │ 450 │  490 │

│            │     │     │     │    │     │

│            │ 150 │ 500 │ 140 │ 280 │ 330 │

│            │     │     │     │    │     │

│            │      │ 400 │     │ 350 │ 400 │

│            │     │     │     │    │     │

│            │     │ 300 │     │ 470 │ 510 │

│            │     │     │     │    │     │

│            │ 100 │ 500 │ 102 │ 205 │ 250 │

│            │     │     │     │    │     │

│            │     │ 400 │     │ 255 │ 300 │

│            │     │     │     │    │     │

│            │     │ 300 │     │ 340 │ 390 │

│            │     │     │     │    │     │

│            │ 75 │ 500 │ 81 │ 160 │ 195 │

│            │     │     │     │    │     │

│            │     │ 400 │     │ 200 │ 240 │

│            │     │     │     │    │     │

│            │     │ 300 │     │ 270 │ 310 │

│            │     │     │     │    │     │

│            │     │ 200 │     │ 405 │ 445 │

│            │     │     │      │    │     │

│            │ 50 │ 400 │ 56 │ 140 │ 175 │

│            │     │     │     │    │     │

│            │     │ 300 │     │ 185 │ 225 │

│             │     │     │     │    │     │

│            │     │ 200 │     │ 280 │ 325 │

│            │  │     │     │    │     │

│            │ 25 │ 300  │ 31 │ 105 │ 135 │

│            │     │     │     │    │     │

│            │     │ 200 │     │ 155 │ 190 │

│            │     │     │     │    │     │

│            │ 10 │ 150 │ 14 │ 93 │ 110 │

│            │     │     │     │    │     │

│            │     │ 100 │     │ 140 │ 165 │

│            │     │        │     │    │     │

│            │     │ 50 │     │ 280 │ 320 │

│            │     │     │     │    │     │

│            │ 4 │ 50 │     │ 120 │ 145 │

│            │     │     │     │    │     │

│            │     │ 25 │     │ 240 │ 270 │

├─────────────────┴──────────┴──────────┴──────────┴─────────┴──────────┤

Примечание - Расход вяжущих указан для смешанных│

│цементно-известковых и цементно-глиняных растворов и песка в│

│рыхлонасыпанном состоянии при естественной влажности 3 - 7%.      │

└───────────────────────────────────────────────────────────────────────┘

При определении состава строительного раствора применяем таблицу 4.

Готовят строительные растворы перемешиванием в специальных агрегатах - растворомешалках с вращающимися лопастями. Емкость их различная - до 750 л и выше, они бывают передвижные (небольших емкостей и стационарные (больших емкостей). Время перемешивания составляющих раствора в растворомешалках 2-3 минуты. Растворы могут быть приготовлены вручную с помощью простейших приспособлений. Дозировать материал лучше по весу, однако на практике чаще дозируют по объему.


Вопрос 36. Что является сырьем для производства керамических строительных материалов? Приведите химический и  минералогический состав и свойства.

 

Ответ: Керамическими называют материалы и изделия, изготовляемые формованием и обжигом глин. "Керамос"- на древнегреческом языке означало гончарную глину, а также изделия из обожженной глины. В глубокой древности из глин путем обжига получали посуду, а позднее (около 5000 лет назад) стали изготовлять кирпич, а затем черепицу.

Основным сырьем для производства керамических изделий являются различные глины, а также шамот, кварцевый песок, шлак и органические добавки (древесные опилки, угольная и торфяная пыль), выгорающие при обжиге.

1. ГЛИНЫ. Общие сведения

Советский ученый проф. П. А. Земятченский, работы которого сыграли видную роль в изучении глин как исходного продукта для получения керамических изделий, дал следующее определение глины: «Глиной называются землистые минеральные массы, или землистые обломочные горные породы, способные с водой образовывать пластичное тесто, по высыхании сохраняющее приданную ему форму, а после обжига получающее твердость камня».

Глины образовались в результате выветривания изверженных по-левошпатных горных пород. Процесс выветривания горной породы состоит из механического разрушения и химического разложения. Механическое разрушение происходит в результате воздействия переменной температуры, воды и ветра, химическое разложение — в результате воздействия различных реагентов, например воды и углекислоты на (полевой шпат, когда образуется минерал каолинит

Наиболее чистые глины, состоящие преимущественно из каолинита, называют каолинами. Обычные глины отличаются от каолинов химическим и минералогическим составом, так как помимо каолинита они содержат кварц, слюду, полевые шпаты, кальцит, магнезит и др.

Классификация глин

По условиям образования глины делят на остаточные и перенесенные.

Остаточные глины первичных отложений обычно засорены частицами горной породы, из которой они образовались.

Перенесенные или осадочные глины более дисперсны, свободны от крупных фракций материнских пород, но могут быть засорены песком, известняком, железистыми соединениями и т. п. Сырье для производства керамических изделий

По отношению к высоким температурам различают глины трех групп: огнеупорные, тугоплавкие и легкоплавкие.

"Огнеупорные глины обладают высокой огнеупорностью — не ниже 1580° С. Это чистые каолинитовые глины, содержащие мало механических примесей, в той или иной степени понижающих огнеупорность. Они обладают большой дисперсностью и очень высокой пластичностью. Глины, имеющие после обжига белый цвет, называются фарфоровыми, их применяют для производства фаянса и фарфора.

Тугоплавкие глины имеют огнеупорность от 1350 до 1580° С. Они содержат небольшое количество примесей кварца, полевого шпата, слюды, карбонатов кальция и магния; применяют их главным образом для производства облицовочного кирпича, плиток для полов, канализационных труб и т. д.

Легкоплавкие глины имеют огнеупорность ниже 1350° С. Эти глины наиболее разнообразны по составу: о ни имеют примеси песка, известняка, окислов железа, слюды, органических веществ и т.д. Их применяют для производства кирпича, блоков, черепицы и аналогичных изделий

Химический состав глин

Глины состоят из различных окислов, свободной и химически связанной воды и органических примесей,; В число окислов, составляющих глины, входят: глинозем Al2O3, кремнезем, окись железа Fe2O3, окись кальция СаО, окись натрия Na2O, окись магния MgO и окись калия. Глинозем оказывает наибольшее влияние на свойства керамических изделий и является важнейшей составной частью глины. Чем выше содержанке глинозема, тем выше пластичность и огнеупорность глины. Кремнезем является основным (по количеству) окислом, образующим глины — количество его достигает 60—78%.

Помимо окиси железа в состав глин входят закись железа FeO, пирит FeS2 и другие модификации железа.; От количества железа и его модификации зависит цвет керамических изделий и температура спекания черепка. Наиболее плотный черепок получается при наличии, в глине закиси железа.

Содержание окиси кальция (в виде карбонатов и сульфатов кальция) в некоторых глинах достигает 25%. Эти соединения кальция сокращают период спекания глин, что ухудшает условия обжига керамических изделий. Такое же влияние на обжиг изделий оказывает и окись магния, находящаяся в глинах в виде карбоната MgCO3 и доломита MgCO3-CaCO3. В незначительных количествах в глинах встречается в виде примесей сернистый ангидрид SO3. Однако если он находится в соединениях с магнием или натрием, то он может вредно влиять на прочность изделий. (Полезными примесями можно считать окись калия и окись натрия которые служат плавнями, понижающими температуру обжига изделий и придающими им большую прочность. Окиси различных металлов, например марганца, титана и др., содержатся в очень небольших количествах и мало влияют на свойства глин. Вообще на свойства глин влияет не только количественное содержание тех или иных окислов, но и их соотношение.

Примеси оказывают большое влияние на свойства глин. Так, при повышенном содержании свободного кремнезема, не связанного с А12О3 в глинистые минералы, уменьшается связующая способность глин, повышается пористость обожженных изделий и понижается их прочность. Из глин, содержащих SiO2 более 80—85% и А12О3 менее 6—8%, керамических материалов получить невозможно. Соединения 4—12 железа, являясь сильными плавнями, понижают огнеупорность глины. Углекислый кальций СаСО3 понижает огнеупорность, уменьшает интервал спекания и увеличивает усадку при обжиге, увеличивает пористость и этим понижает прочность и морозостойкость изделий.

Вода содержится в глинах как в виде свободной, так и химически связанной, т. е. входящей в состав глинообразующих минералов. Наличие в глине тех или иных минералов дает возможность судить о количестве химически связанной воды и, следовательно, о отношении к сушке и обжигу. От содержания органических веществ, находящихся в глине в виде остатков растений и гумусовых веществ, также зависят потери глин при обжиге и, следовательно, усадка изделий. Кроме того, повышенное количество органики снижает огнеупорность глин. Знание химического состава глин дает возможность определить степень пригодности их для производства тех или иных керамических изделий.

Основные свойства глин

Важнейшими свойствами глин являются следующие: пластичность, отношение к сушке (воздушная усадка) и отношение к высокой температуре.

Пластичность является важнейшим технологическим свойством глин, обусловливающим возможность формования из них различных керамических изделий. Степень пластичности зависит от минералогического и гранулометрического (зернового) состава, формы и харак-тера пов ерхности зерен (шероховатая или окатанная), а также от содержания растворимых солей, органических примесей и воды.

Имеется много методов определения пластичности. Наиболее широкое распространение получил метод, характеризующий пластичность по величине воздушной усадки глиняного теста и количества воды затворения, необходимого для получения удобоформуемой массы. Глины более пластичные требуют большего количества воды и дают большую усадку, чем тощие малопластичные глины. По степени пластичности глины делят на высокопластичные, имеющие водопотребность более 28% с воздушной усадкой от 10 до 15%, средней пластичности — водопотребность от 20 до 28%, воздушная усадка от 7 до 10% и малопластичные — водопотребность менее 20%, воздушная усадка от 5 до 7%.

Пластичность глины можно повышать добавлением более пластичной глины, а также путем отмучивания, т. е. освобождением глины от примесей песка. Механическая обработка и вылеживание также повышают пластичность глин. Понижение пластичности достигается добавлением отощающих добавок.

Пластичность глин зависит от гранулометрического состава: чем больше содержание глинистых частиц (мельче 0,001 мм), тем выше пластичность. В состав глины входят различные по крупности частицы: от 5 до 0,14 мм — песчаные фракции, от 0,14 до 0,005 мм — пылевидные фракции и менее 0,005 мм — глинистые фракции. Огнеупорные глины являются высокодисперсными — содержание фракций меньше 0,001 мм составляет 60—80%. В легкоплавких глинах преобладают фракции от 0,01 до 0,001 мм.

Воздушной усадкой глины называется уменьшение ее объема, происходящее при сушке отформованных изделий в условиях нормальной (комнатной) температуры воздуха, вследствие удаления из нее воды и сближения глинистых частиц; величина усадки выражается в процентах и для кирпичных глин колеблется в пределах от 4 до 15%.

Отношение глин к высокой температуре. Наряду с пластичностью характерным свойством глин является их способность превращаться при обжиге в камиевидную массу. Этот процесс сопровождается изменением цвета и удельного веса глин, потерей пластичности и уменьшением объема.] При обжиге глин в начальной период повышения температуры удаляется химически несвязанная вода, затем выгорают органические добавки.

Потеря пластичности глины связана с дегидратацией водных алюмосиликатов, имеющихся в глинах: она происходит при температуре 450—750° С. Дальнейшее повышение температуры соответствует собственно обжигу. При этом начинает расплавляться некоторая легкоплавкая составная часть глины, которая, растекаясь, обволакивает перасплавившиеся частицы глины. При охлаждении расплавленная часть глины затвердевает и цементирует нерасплавившиеся частицы. Так происходит процесс превращения глины в камневидное состояние. Частичное плавление глины и действие сил поверхностного натяжения расплавленной массы вызывают сближение ее частиц, происходит сокращение объема — огневая усадка. Совокупность процессов усадки, уплотнения и упрочнения глины при обжиге называют спеканием глины. При дальнейшем повышении температуры масса переходит в текучее состояние — наступает плавление глины.

На цвет обожженных глин оказывает влияние главным образом содержание окислов железа, которые окрашивают керамические изделия в красный цвет при избытке в газовой среде ки слорода, в темно-коричневый или черный цвет — при недостатке кислорода. Если глина содержит известняк в тонкодисперсном состоянии, то интенсивность окраски изделий уменьшается.

Свойства глины, не расплавляясь противостоять воздействию высоких температур, называют огнеупорностью!. Определяют ее керамическими пироскопамиj (конусами Зегера),] имеющими форму трехгранной пирамиды высотой 30 мм и стороной у основания 8 мм, а у вершины 2 мм и характеризуют той температурой, при которой конус размягчается и оседает, касаясь своей вершиной подставки, на которой он введен в печь. Для определения огнеупорности глины из нее изготавливают образец,' подобный конусу Зегера, устанавливают его вместе с. несколькими конусами, имеющими разные температуры огнеупорности, и конусы нагревают. Огнеупорность глины соответствует огнеупорности того конуса, который коснулся своей вершиной подставки одновременно с испытуемым образцом. Разность между температурой начала спекания и огнеупорностью глины называется интервалом спекания, он находится в пределах 100—150° у чистых каолинитовых глин и 25—50° у глин, используемых для обыкновенного глиняного кирпича

ДОБАВКИ К ГЛИНАМ

Для придания различных свойств как глинам, так и получаемым из них керамическим изделиям в глину вводят различные добавки. Кратко рассмотрим добавки, имеющие наиболее частое применение.

Отощающие добавки

В высокопластичные глины, требующие для затворения большого количества воды (до 28%) и поэтому дающие большую линейную усадку при сушке и обжиге (до 15%), необходимо вводить отощающие добавки, т. е. непластичные вещества. При этом значительно уменьшается количество воды, необходимой для затворения глиняного теста, что сокращает размер усадки (до 2—6%).

VB качестве отощающих добавок чаще всего применяют вещества неорганического происхождения — кварцевый песок, шамот (обожженная и измельченная глина) и бой изделий, молотый шлак и золу. Эти добавки не только уменьшают усадку изделий, но и улучшают формовочные свойства массы, облегчают технологический процесс производства и устраняют брак. В ряде случаев они улучшают физические свойства изделий, например термостойкость и теплопроводность.

Выгорающие добавки

Для получения изделий с меньшим объемным весом и увеличенной пористостью применяют органические выгорающие добавки. Наиболее часто используются древесные опилки, угольная мелочь и угольный порошок, торфяная пыль и др. Применяют также вещества, выделяющие при высокой температуре обжига углекислоту, что ведет к образованию пор — мел, доломит и глинистый мергель (в молотом виде). Все эти добавки обладают также и свойствами отощающих добавок.

Специальные добавки

Для придания керамическим изделиям специальных свойств могут применяться соответствующие добавки. Так, например, при изготовлении кислотоупорных изделий и облицовочных плиток добавками к глинам являются песчаные смеси, затворенные жидким стеклом или щелочами. При необходимости понижения температуры обжига некоторых изделий в глину вводятся флюсы (плавни) — молотый полевой шпат, руды, содержащие железо, песчаник и др. В качестве добавок, повышающих пластичность формовочной массы, применяют в небольших дозах (0,1—0,3%) поЕерхностно-активные вещества, например сульфитно-спиртовую барду. Для повышения качества кирпича в ви-де добавки употребляют пирофосфаты и полифосфаты натрия.

Как специальные добавки можно рассматривать и окислы некоторых металлов, добавляемые в массу беложгущихся глин для окраски ее в определенный цвет.


Вопрос 60. В че м причины гниения и возгорания древесины и как можно защитить древесину?

 

Ответ: Гниение — разложение целлюлозы древесины, происходящее вследствие деятельности дереворазрушающих грибов и микроорганизмов.

Лесные грибы поражают растущее дерево и редко встречаются в лесоматериалах, так как зараженные части ствола отделяются при сортировке леса.

Складские грибы паразитируют на срубленной древесине в лесу или на складах, пока древесина еще сохраняет свои соки. К числу опасных складских грибов, вызывающих гниль, относятся гриб складской, встречающийся в штабелях бревен и пиломатериалов, а также гриб столбовой (или шпальный).

Домовые грибы-поражают не только деревянные конструкции, но и органические строительные материалы (древесноволокнистые и древесностружечные плиты, камышит и т. п.).

Наиболее опасными из домовых грибов являются так называемый настоящий домовой гриб, белый домовой гриб, пленчатый домовой гриб и др. Эти грибы поражают древесину как хвойных, так и лиственных пород.

Способы предотвращения гниения имеют своей целью создание условий, неблагоприятных для развития дереворазрушающих грибов.

Поскольку грибы развиваются при определенной влажности, то основным способом предотвращения гниения является применение для деревянных конструкций, находящихся на воздухе, сухой древесины и предохранение ее от увлажнения в последующем. Достигается это прокладкой гидроизоляции между деревянными элементами и другими частями здания, применением соответствующих красочных составов (лаков, эмалей, масляных красок). Большое значение имеет создание условий для естественной вентиляции, обеспечивающей постоянное проветривание деревянных конструкций и предотвращающей накопление

влаги в древесине. Однако нельзя предохранять древесину от увлажнения, когда деревянная конструкция или ее часть подвергается в эксплуатационных условиях систематическому попеременному увлажнению и высыханию. В этих случаях основным является химический способ борьбы с гниением — введение в древесину антисептиков — веществ, ядовитых для грибов.

Антисептики, обладая токсичностью по отношению к грибам, должны быть безвредными для людей и животных. Применяют антисептики, не понижающие прочности древесины и не вызывающие коррозии металлических креплений. Кроме того, антисептики должны сохраняться в условиях эксплуатации. Для воздушных условий обычно применяют антисептики, растворимые в воде. Антисептирование деревянных элементов, подвергающихся действию воды (шпалы, столбы, сваи и т. п.), осуществляют нерастворяющимися маслянистыми веществами.

Антисептические пасты применяют как обмазки для защиты от гниения деревянных конструкций при повышенной влажности воздуха, а также для элементов, находящихся в грунтах с переменной влажностью. Пасту, нанесенную на поверхность столбов или других элементов, соприкасающихся с землей, защищают гидроизоляцией (толем, рубероидом и т. п.).

Те места деревянной конструкции, которые повреждены дереворазрушающими грибами или насекомыми, обрабатывают сильнодействующими антисептиками. Древесину, пораженную гнилью, удаляют и сжигают во избежание заражения здоровой древесины.

Древесина может подвергаться стерилизации путем облучения лучами кобальта по определенному режиму. Применен ие радиационных методов возможно только при строгом обеспечении правил охраны труда.

Усовершенствование установок для стерилизации древесины горячим воздухом (при 100°С), который вызывает гибель грибов и насекомых, поможет сохранить деревянные конструкции, находящиеся в эксплуатации.

Способы антисептирования древесины применяют в зависимости от типа и условий службы конструкции.

Поверхностная обработка производится водными растворами антисептиков, которые наносят на поверхность деревянных

элементов кистями или распылителями за 2-3 раза. Глубина пропитки древесины составляет в этом случае 1-2 мм (ее легко определить, если раствор подкрасить, например, анилиновой краской). Большая глубина пропитки получается при погружении деревянных элементов в ванну с холодным или подогретым раствором антисептика.

Пропитка в горяче-холодных ваннах осуществляется в определенной последовательности; сначала подсушенную древесину погружают в горячий антисептик (с температурой 90-95°С) и выдерживают в нем несколько часов. За это время древесина нагревается и воздух, находящийся в ее порах, частично удаляется. Затем деревянные элементы переносят в ванну с «холодным» антисептиком (20-40°С). При охлаждении воздух в порах сжимается и под действием создающегося вакуума антисептик засасывается в древесину. Для пропитки применяют водорастворимые и маслянистые антисептики. Способ горяче-холодных ванн позволяет пропитать древесину сосны на всю толщину заболони.

Пропитка под давлением производится в автоклавах. Материал загружают в автоклав, который герметически закрывают. Сначала в автоклаве создается вакуум и материал выдерживают до удаления воздуха из древесины. Затем автоклав заполняют подогретым антисептиком и повышают давление в нем до 0,6-0,8 МПа, после чего давление снижают до нормального, выпускают оставшийся антисептик и выгружают из автоклава антисептированный материал. Этим способом обрабатывают деревянные элементы, соприкасающиеся с землей, бетоном или каменной кладкой.

Пропитка в высокотемпературной ванне (разработанная А. И. Фоломиным) объединяет процессы сушки и пропитки сырой древесины. Материалы из хвойных или лиственных пород помещают в ванну с каменноугольным маслом (или другим равноценным антисептиком), нагретым до температуры 160-170°С, при которой из древесины быстро удаляются влага (в виде пара) и воздух. Это значительно облегчает проникновение антисептика в древесину при погружении ее в ванну с температурой антисептика около 100°С. Сушка древесины в высокотемпературной жидкой среде позволяет избежать трещин и добиться полной стерилизации древесины.

Диффузионная пропитка происходит, когда водорастворимый антисептик, содержащийся в антисептической пасте, постепенно растворяется и пропитывает древесину вследствие медленного диффузионного перемещения. Части деревянных конструкций, подвергающиеся периодическому увлажнению (концы деревянных балок и прогонов, опорные части ферм и т. п.), покрывают слоем битумно-силикатной или экстрактовой пасты, содержащей NaF, Na2SF.

 


Дата добавления: 2018-04-15; просмотров: 176; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!