Соединение на пластинчатых нагелях.



Пластинки изготавливают из высушенной до 8% чистой древесины дуба или антисептированной березы. Балкам при изготовлении придается строительный подъем обеспечивающий плотное защемление пластинок.  - строительный подъем. Из условия равнопрочности работы пластинки на изгиб и смятия поперек волокон, длина пластинки принимается равной lпл=4,5δпл (lпл=54, следовательно δпл=12). По всем конструктивным требованиям полученная высота сечения одного бруса 15 и более см.

Пластинки устанавливают равномерно по длине балки с шагом не менее 9δпл, во избежание скалывания брусьев между гнездами.

В изгибаемых элементах работа на равномерно распределенную нагрузку, а так же к близких к параболе эпюрах изгибаемых моментов любых др. напряжений, в средней части длиной 0,2l пластинки не устанавливают, т.к. сдвиги в шве очень не велики.

 

 

Расчет балок (Деревягина) на пластинчатых нагелях.

Расчет способности одного пластинчатого нагеля вычисляется из условия смятия и изгиба: .

Из условия равнопрочности пластинок при соотношении lпл=4,5δпл

 - для стандартной толщины =12мм.

Общее количество пластинок устанавливаемых на участке от опоры до сечения с наибольшим изгибающим моментом (пол пролета) определяется по формуле:

S – статический момент части всего сечения отсеченной швом в котором устанавливаются рассчитываемые пластинки.

I – момент инерции всего сечения (bh3/12).

Когда пластинки в средней части балки не устанавливают, то их число уменьшается на 20%. В таком случаи формула принимает вид: .

Балки Деревягина относятся к классу составных конструкций на податливых связях, т.к. деформация шва может достигать 2мм.

Прочность и жесткость составных элементов несколько ниже чем у цельных, но выше чем у суммы рабочих брусьев. Расчет прочности и жесткости производится как для элементов цельного сечения, а момент инерции и момент сопротивления умножают на поправочный коэф меньше 1, учитывающий податливость связи:

кw, кж – принимают по таблице 13 СНиПа в зависимости от пролета балки и числа швов.

 

Соединения на цилиндрических нагелях

Нагеля называют связи препятствующие взаимному перемещению соединяемых элементов и работают при этом на изгиб. По форме различают цилиндрические и пластинчатые нагели. По материалу: стальные, алюминиевые, деревянные и стеклопластиковые.

Цилиндрические нагели – к ним относятся: болты и штыри, винты всех видов (шурупы и глухори), гвозди – особая группа нагелей, отличающаяся тем, что при диаметре до 6мм включительно их забивают в древесину без просверливания гнезд. Нагели остальных типов устанавливают в отверстие диаметром равным диаметром нагеля для болтов и штырей и 0,8 диаметра для винтов всех видов. Гвозди создают в соединениях раскалывающие напряжения, поэтому расстояния между ними измеряем числом диаметров принимаемых большими чем для нагелей остальных типов.

В болтовых и винтовых соединениях возникают скалывающие напряжения. Расчет на скалывание и раскалывание не производят, а эти виды хрупкого разрушения нагельного соединение исключают выполнением конструктивных требований по расстановке нагельных соединений, подразделяют на односрезные и многосрезные, симметричные и несимметричные. Срезом соединения называется плоскость взаимного смещения соединения элементов (рабочий шов).

Нагели могут пересекать 1 или несколько швов, в соответствии их называют односрезными и многосрезными. Во всех случаях нагели следует устанавливать во избежание совпадения с сердцевиной или усушечными трещинами (солнечными).

 

Расстояния вдоль волокон между нагелями S1 устанавливается нормами в зависимости от вида напряженного состояния в соединениях. Они больше для гвоздевых стыков в которых возникают раскалывающие напряжения и меньше для болтовых, работающих только на скалывание.

Для болтов: S1≥7d1, где d1- диаметр болта.

Для гвоздей: S1≥(15…25)dгв.

Во избежание раскалывания допускается забивание гвоздей в доски толщиной не менее 4 диаметров гвоздя.

Расстояние S2 и S3 – так же регламентировано и составляет от 3 до 4 диаметров нагеля.

Работа и расчет нагельного соединения.

Древесина в нагельных гнездах работает на смятие, а сами нагели на изгиб.

Крайние элементы сминают одним срезом нагеля, средние элементы двумя срезами, поэтому расчеты производят отдельно.

Расчетная несущая способность одного среза нагеля вычисляют по формула:

; 0,8 и 0,5 – осредненное расчетное сопротивление древесины смятию в кН/см2.

На изгиб нагели рассчитывают по формулам:

Все эти формулы справедливы когда усилия действуют вдоль волокон древесины, если же направление усилий и волокон не совпадают для всех соединений (нагельных) кроме гвоздевых, несущую способность умножают на кα на смятие и на  в расчетах на изгиб. Гвоздевые соединения работают один по всем направлениям поскольку гвозди обмяли древесину при разбивке, уплотнив ее в направлении поперек волокон.

 

 

22. Особенности работы гвоздей

 Гвозди в соединениях сдвигаемых деревянных эле­ментов работают как нагели. Их обычно забивают в дре­весину без предварительного просверливания, что обус­ловливает некоторые особенности их работы. Как указы­валось раньше, исследования показали повышенную не­сущую способность гвоздей, вставленных в предвари­тельно просверленные отверстия. Однако в этом случае гвозди принято называть тонкими наге­лями и их расчет полностью совпадает с расчетом наге­лей.

Диаметр гвоздей, забиваемых в цельную древесину, не превышает 6 мм и поэтому их несущая способность не зависит от угла между направлением действия силы и направлением волокон. В связи с этим для гвоздей коэффициент уменьшения несущей способности ka не вводят в формулы определения несущей спо­собности.

При определении расчетной длины защемления кон­ца гвоздя в последней непробиваемой насквозь доске не следует учитывать часть длиной 1,5 dГB. Кроме того, из длины гвоздя при определении длины его защемления следует вычитать по 2 мм на каждый шов между соединяемыми элементами. Если расчетная дли­на защемления конца гвоздя получается меньше 4dГB, то его работу в примыкающем к шву элементе учитывать не следует. Диаметр гвоздей принимать не более 0,25 толщины пробиваемого элемента. Если последняя доска пробивается гвоздем насквозь, то, учитывая отщеп ее нижнего слоя, рабочая толщина доски уменьшается на 1,5dГB.

Заостренный конец гвоздя, проникая в древесину, раздвигает ее волокна в сторону, в результате чего про­исходит уплотнение древесины около гвоздя, что увели­чивает опасность раскалывания древесины. Уменьшить эту опасность можно относительно более редкой расста­новкой забиваемых гвоздей по сравнению с нагелями.

Минимальные расстояния между осями гвоздей вдоль волокон древесины следует принимать не менее S1 = 15dГB при толщине пробиваемого элемента c>10dГВ. S1=25dГB при толщине пробиваемого элемента c=4d. Для промежуточных значений толщины элемента наи­меньшее расстояние следует определять по интерполя­ции.

Для элементов, не пробиваемых гвоздями насквозь, расстояние между осями гвоздей следует принимать независимо от их толщины S1≥15d. Расстояние вдоль во­локон древесины от оси гвоздя до торца элемента во всех случаях надо брать не менее S1 =15d. Расстояние между осями гвоздей поперек волокон древесины при прямой расстановке гвоздей принимают не менее S2=4d; при шахматной расстановке или расстановке их косыми ря­дами это расстояние может быть уменьшено до S2=3d, а расстояние от продольной кромки до оси гвоздя 4d.

Гвозди образуют более плотные соединения, чем на­гели. Недостатком гвоздевых соединений является замет­ная ползучесть при длительно действующих нагрузках. Для увеличения плотности соединений, особенно в слу­чаях прикрепления стальных накладок к деревянным элементам, нашли применение особые гвозди с неглад­кой поверхностью, забиваемые в древе­сину пневматическими молотками.

Клеевые соединения

Равнопрочность, монолитность и долговечность кле­евых соединений в деревянных конструкциях могут быть достигнуты только применением водостойких конструк­ционных клеев. Долговечность и надежность клеевого соединения зависят от устойчивости адгезионных свя­зей, вида клея, его качества, технологии склеивания, эк­сплуатационных условий и поверхностной обработки до­сок.

Клеевой шов должен обеспечивать прочность соеди­нения, не уступающую прочности древесины на скалы­вание вдоль волокон и на растяжение поперек волокон. Прочность клеевого шва, соответствующую прочности древесины на растяжение вдоль волокон, пока еще не удается получить, поэтому в растянутых стыках пло­щадь склеиваемых поверхностей приходится увеличи­вать примерно в 10 раз косой срезкой торца на ус или на зубчатый шип.

Плотность (беспустотность) контакта клеящего ве­щества со склеиваемыми поверхностями должна созда­ваться еще в вязкожидкой фазе конструкционного клея, заполняющего все углубления и шероховатости, благода­ря способности смачивать склеиваемую поверхность. Чем ровнее и чище остроганы склеиваемые поверхности и чем плотнее они прилегают одни к другим, тем полнее моно­литность склеивания, тем равномернее и тоньше клеевой шов. Деревянная конструкция, монолитно склеенная из сухих тонких досок, обладает значительными преимуществами перед брусом, вырезанным из цельного бревна, но для реализации этих преимуществ необходимо строгое соблюдение всех условий технологии инду­стриального производства клееных деревянных конст­рукций.

После отверждения конструкционного клея от сфор­мировавшегося клеевого шва требуется не только равнопрочность и монолитность, но и водостойкость, тепло­стойкость и биостойкость. При испытаниях разрушение опытных образцов клеевых соединений должно проис­ходить в основном по склеиваемой древесине, а не по клеевому шву (с разрушением внутренних, когезионных связей) и не в пограничном слое между клеевым швом и склеиваемым материалом (с разрушением погранич­ных, адгезионных связей).

Виды клея

В отличие от казеиновых и других белковых клеев синтетические конструкционные клеи образуют прочный водостойкий клеевой шов в результате реакции поли­меризации или поликонденсации. В настоящее время в основном применяют резорциновые, фенольнорезорциновые, алкилрезорциновые, фенольные клеи. Согласно СНиП П-25-80, выбор типа клея зависит от температурно-влажностных условий, при которых будут эксплуа­тироваться клееные конструкции.

Эластичность и вязкость клеевого шва особенно важ­на при соединении деревянных элементов с металличес­кими, фанерными, пластмассовыми и другими конструк­ционными элементами, имеющими температурные, уса­дочные и упругие характеристики. Однако использование эластичных каучуковых клеев в напряженных соеди­нениях как правило недопустимо из-за недостаточной прочности таких соединений и чрезмерной ползучести их при длительном нагружении.

Чем суше и тоньше склеиваемые доски, тем меньше опасность образования в них трещин. Если усушечное коробление недосушенных досок произойдет еще до от­верждения клеевого шва, но после прекращения давле­ния пресса, то склеивание будет необратимо нарушено, хотя возможно, что этот брак обнаружится лишь позд­нее, когда трещина раскроется по клеевому шву,

Виды соединений на клею

Растянутый стык клееных элементов в заводских ус­ловиях изготовляют на зубчатый шип (рис. IV.40, а, б) с уклоном склеиваемых поверхностей зуба примерно 1 : 10. Это унифицированное решение, по прочности не уступающее решению стыка на ус (при том же уклоне), более экономично по затрате древесины и более техно­логично в производстве; поэтому оно должно полностью заменить при заводском изготовлении все остальные ви­ды стыков.

Зубчатый шип одинаково хорошо работает на растя­жение, изгиб, кручение или сжатие. Согласно испытани­ям, прочность такого стыка на клее даже на разрыв оказалась не ниже прочности цельного бруска, ослаб­ленного «нормальным» для I категории сучком размером 1/4-1/6 ширины соответствующей стороны элемента.

На практике рекомендуется использовать наиболее технологичный вариант с нарезкой ши­пов перпендикулярно пласти. Этот вариант применим при любой ширине склеиваемых досок, даже слегка по­коробленных. При стыковании клееных блоков больших сечений приходится применять склеива­ние холодным (или теплым) способом.

Для сращивания фанерных листов в заводском про­изводстве таким же унифицированным неразборным видом соединения служит стыковое соединение на ус; его применение в напряженных элементах кон­струкций требует соблюдения следующих условий: дли­ну уса принимают равной 10—12 толщинам фанеры, а направление волокон наружных шпонов (рубашек) должно совпадать с направлением действующих усилий. Ослабление обычной фанеры стыком на ус учитывают коэффициентом Косл=0,6, а бакелизированной фанеры коэффициентом 0,8.

 


Дата добавления: 2018-04-15; просмотров: 821; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!