Умови ефективного застосування результатів БКЗ та задачі, які вирішуються



За три спуск-підйоми апаратурою КСП-М записують криві ПС, стандартного каротажу та повного бокового каротажного зондування. За перший цикл реєструються покази “стандарт-сигнал”, криві зондів A2.0M0.5N, A4.0M0.5N, A0.5M8.0N; за другий цикл – криві зондів A8.0M1.0N, N0.5M2.0A, A1.0M0.1N, A0.4M0.1N; за третій – крива ПС. Багатоелектродний зонд монтується на відрізку кабелю КОБДТ-10 довжиною 30 м і містить електроди, які утворюють комплект зондів БКЗ і стандартного каротажу, а також електрод для запису кривої ПС.

Апаратура КСП-М призначена для роботи з одножильним броньованим кабелем КОБДТ-10 довжиною до 10 км із середніми геофізичними лабораторіями, які укомплектовані чотирьохканальним реєстратором і уніфікованими блоками.

Метод бокового каротажного зондування ефективно використовується при дослідженні свердловин, які заповнені відносно слабомінералізованою рідиною.

Метод БКЗ використовується для дослідження розрізів свердловин з метою детального вивчення пластів і отримання їх кількісних характеристик. Переважно методом БКЗ досліджується продуктивна ділянка розрізу свердловини. У результаті інтерпретації даних БКЗ отримують значення питомого електричного опору пласта, яке близьке до дійсного значення rп, а також параметри зони проникнення промивної рідини – rзп, Dзп. За величинами rп і rзп, використовуючи петрофізичні зв’язки, виявляють у розрізі свердловини корисні копалини, оцінюють пористість, проникність колекторів, нафтогазонасиченність, нафтовіддачу порід.

 

Вивчення будови апаратури радіоактивного каротажу

Мета, завдання і тривалість роботи

 

Метою роботи є ознайомлення студентів з будовою та функціональною блок-схемою апаратури радіоактивного каротажу.

Завдання:

- вивчити функціональну блок-схему апаратури радіоактивного каротажу;

- провести реєстрацію стандартних сигналів і встановити масштаби реєстрації.

Тривалість роботи - 2 години.

 

Основні теоретичні положення

Радіоактивним каротажем називають геофізичні дослідження свердловин, які засновані на вимірюванні характеристик полів іонізуючих випромінювань (природних і викликаних штучно).

Найбільше розповсюдження в практиці ГДС одержали наступні види радіоактивного каротажу:

- гамма-каротаж, призначений для вивчення природного гамма-випромінювання гірських порід;

- гамма-гамма-каротаж;

- нейтронні методи;

- імпульсні нейтронні методи.

Два останні засновані на вивченні характеристик штучно викликаних полів іонізуючого випромінювання, а саме: гамма-випромінювання та нейтронів.

Методи гамма-каротажу та спектрального гамма-каротажу

Радіоактивність, основні закони радіоактивного розпаду

Радіоактивністю називається здатність нестійких ізотопів хімічних елементів самочинно перетворюватись в інші більш стійкі елементи з випромінювання альфа-, бета-, гамма-променів, а інколи і інших частинок.

Радіоактивність ізотопів, які знаходяться в природних умовах, отримала назву природної радіоактивності, а радіоактивний розпад ядер атомів при їх бомбардуванні елементарними частинками (електронами, протонами, нейтронами, альфа-частинками та іншими) – штучною радіоактивністю.

Процес перетворення одного ізотопу в інший називається радіоактивним розпадом. Радіоактивне перетворення протікає самочинно та ймовірність радіоактивного розпаду lр за одиницю часу є сталою для кожного радіоактивного елементу. Відповідно, кількість актів радіоактивного розпаду dN за час dt визначається кількістю радіоактивних ядер N у даний момент часу t:

 

.                               (3.1)

 

Інтегруючи вираз (3.1), отримаємо:

 

.                             (3.2)

 

де lnC – стала інтегрування.

Використовуючи початкову умову t=0, N=N0 отримаємо основний закон радіоактивного розпаду:

 

.                                (3.3)

 

Час розподілу tр рівний величині, яка обернена сталій розподілу, і має розмірність часу.

Практично тривалість життя радіоактивного ізотопу більш зручно характеризувати періодом піврозпаду T1/2. Період піврозпаду T1/2 – це час, протягом якого розпадається половина початкової кількості атомів даної речовини.

Із співвідношення (3.3) отримаємо:

 

,                          (3.4)

 

звідси

 

.                  (3.5)

 

Активність радіоактивного розпаду ap, яка часто в радіометрії свердловин називається абсолютною радіоактивністю, оцінюється кількістю розпадів, що проходять в одиницю часу (розп./с):

 

.                            (3.6)

 

Кількість радіоактивної речовини в системі одиниць СІ виражають в кілограмах (кг).

Для оцінки радіоактивності гірської породи qп при радіометричних дослідження свердловин користуються об’ємними одиницями концентрації радіоактивних елементів. В системі одиниць СІ найбільш зручна еквівалентна частка одиниці – нанокілограм-еквівалент радію на кубічний метр породи – нкг·еквRa/м3 (10-9кг·еквRa/м3).

При розпаді радіоактивних елементів випромінюються альфа- бета-частинки та гамма-кванти, причому випромінювання гамма-квантів не є самостійним актом, воно супроводжується альфа- або бета-розпадом ядер елементів.

Альфа-промені – потік частинок, які є ядрами атомів гелію (42He), несуть подвійний додатній заряд 9,54·10-10 електростатичних одиниць та володіють найбільшою масою (6,598·10-12г) серед елементарних частинок. Швидкість альфа-частинок природних радіоактивних елементів становить – 1,39·109-2,05·109м/с.

Бета-промені – представляють собою потік частинок, які несуть одинарний від’ємний (електрони) або додатній (протони) заряд 4,77·10-10 електростатичних одиниць і мають масу 0,9035·10-27 г. Швидкість бета-частинок коливається практично від нуля до 0,998 швидкості світла.

Гамма-промені – це потік нейтральних частинок, які мають таку ж природу, що і радіохвилі, світло, рентгенівське випромінювання, і відрізняються від них тільки більш високою частотою коливань (n>2,42·1018 с-1).

Швидкість розповсюдження гамма-квантів стала та у вакуумі рівна швидкості світла c=300000м/с.

Енергія гамма-кванта виражається співвідношенням:

 

,                                  (3.7)

 

де h – стала Планка, яка рівна 6,62·10-34 Дж·с.

Довжина хвилі l, яка випромінює гамма-квант, обернено пропорційна частоті коливань:

 

.                                     (3.8)

Природна радіоактивність гірських порід, в основному, обумовлена наявністю в них природних радіоактивних елементів – урану 23892U і продукту його розпаду 22688Ra, торію 23290Th та радіоактивного ізотопу калію 4019K. Інші радіоактивні елементи (рубідій 8737Rb, самарій 147162La, лютецій 17671Lu та інші) характеризуються великими періодами піврозпаду, малими концентраціями в гірських породах, тому суттєвого вкладу в сумарну природну радіоактивність вони не вносять.

Найбільш високою радіоактивність відмічаються магматичні породи, найнижчою – осадові та проміжною – метаморфічні.

Пониженою радіоактивністю серед осадових утворень характеризуються хемогенні відклади (ангідрити, гіпси, кам’яна сіль, за виключенням калійної солі), а також чисті пісковики, піщаники, вапняки і доломіти. Максимальною радіоактивністю характеризуються глини, глинисті та бітумінозні сланці, фосфорити, а також калійні солі.

Високорадіоактивні різниці зустрічаються і серед чистих незаглинизованих пісків, піщаників та вапняків, якщо дані породи збагачені моноцитом, карнотитом, глауконітом, польовими шпатами та іншими мінералами, які містять радіоактивні елементи.

У деяких випадках радіоактивність гірських порід підвищується у результаті насичення їх пластовими водами, які збагачені ураном і радієм, наприклад, хлоркальцієвого та особливо сульфідно-барієвого типів.


Дата добавления: 2018-04-05; просмотров: 189;