ИССЛЕДОВАНИЕ СТРУКТУРЫ УГЛЕРОДИСТЫХ



ЧУГУНОВ МЕТОДОМ МИКРОАНАЛИЗА

                                                                                  

Цель работы

1. Изучить микроструктуру белых, ковких, серых и высокопрочных чугунов (с различным содержанием углерода).

2. Установить связь между составом, условиями получения и структурой исследуемых чугунов.

 

Приборы, материалы и инструменты

1. Металлографический микроскоп.

2. Набор микрошлифов белого, ковкого, серого и высокопрочно­го чугунов в нетравленом и травленом состоянии.

3. Атлас микроструктур.

 

Краткие теоретические сведения

Чугуны – это железоуглеродистые сплавы, содержащие свыше 2,14 % С. Кроме железа и углерода в чугунах присутствуют другие элементы – примеси (Мn, Si, Р, S). Железо и углерод образуют в чугу­нах фазы: аустенит, феррит, цементит, механические смеси: перлит, ле­дебурит. Применяя специальный отжиг, в структуре чугунов получают графит. Первые четыре структуры мы рассмотрели при изучении сталей.

Ледебурит – механическая смесь (эвтектика), состоящая из зе­рен аустенита или перлита с цементитом, образующаяся непосредст­венно из жидкой фазы при ее охлаждении до температуры 1147 °С. При температурах выше 727 °С структура ледебурита представляет механи­ческую смесь аустенита и цементита. При температурах ниже 727 °С – смесь перлита и цементита. Ледебурит очень твердая (НВ 700) и хрупкая структура, т. к. в ее составе много цементита. После травления ледебурит виден в микроскопе в виде светлых участков цементита с темными пятнами перлита.

Графит – это химически чистый углерод. Он имеет гексагональ­ную решетку и низкие механические свойства, поэтому с точки зре­ния прочности в металлических структурах чугунов графитные включения можно рассматривать как пустоты. Вместе с тем графитные включения в чугунах играют и опреде­ленную положительную роль: улучшают обрабатываемость чугуна резанием, его износостойкость и антифрикционность, выпол­няя функцию своеобразной «сухой смазки». Кроме того, графитовые включения повышают демпфирующую спо­собность сплава, т. е. способствуют гашению вибраций.

Микроструктура белых чугунов. В белых чугунах весь углерод находится в связанном состоянии, т. е. в виде цементита (Fе3С). Белый чугун, в зависимости от содержания углерода, разделяется на доэвтектический (от 2,14 до 4,З % С), эвтектический (4,З % С) и заэвтектический (от 4,3 до 6,67 % С).

Микроструктура доэвтектического белого чугуна после полного охлаждения (рис. 8.1) имеет структуру: ледебурит + перлит + вторичный цементит.

  Рисунок 8.1 – Правая часть диаграммы состояния Fе-С

Вторичный цементит выделяется из аустенита, содер­жащего при 1147 °С 2.14 % С. В белых чугунах с низким содержанием углерода (близким к 2,14 %) вто­ричный цементит выявля­ется достаточно четко, т. к. в них ма­ло ледебурита. С увеличением содержания углерода вторичный цементит в структуре сливается с цементитом ледебурита. Можно считать, что структура таких доэвтектических белых чугунов состоит из ледебурита и перлита (рис. 8.2 а).

 

               а)     х450            б)     х450            в)     х100  

Рисунок 8.2 – Микроструктура доэвтектического (а), эвтектического (б) и заэвтектического (в) чугунов

 

Микроструктура эвтектического белого чугуна состоит только из ледебурита, образующегося при 1147 °С при эвтектической кристаллизации жидкого сплава с содержанием 4,3 % С (рис. 8.1).  При температурах выше 727 °С эвтектика состоит из цементита (эв­тектического и вторичного) и аустенита. При температуре 727 °С аустенит с содержанием 0,8 %С превращается в перлит. Таким образом, после полного охлаждения ледебурит состоит из цементита и перлита (рис. 8.2 б).

Микроструктура заэвтектического белого чугуна (рис. 8.1) состоит из ледебурита и первичного цементита (рис. 8.2 в).

Микроструктура серых чугунов. Химический состав серых чугу­нов отличается повышенным содержанием кремния. При рассмотрении в микроскоп нетравленого микрошлифа серого чугуна хорошо видны включения пластинчатого графита (рис. 8.3 а). На величину и расположение включений графита оказывает влияние химический состав чугуна, скорость охлаждения, температура и время выдержки расплавленного чугуна перед отливкой. Так, например, с увеличением скорости охлаждения расплав­ленного чугуна пластинки графита становятся более мелкими (см. атлас микроструктур).

Металлическая основа в серых чугунах, в зависимости от свя­занного углерода, может быть ферритной, феррито-перлитной и перлитной (рис. 8.4).

            а)    х2000           б)    х200          в)    х 200  

Рисунок 8.3 – Микроструктура серого перлитного (а), ковкого ферритного (б) и высокопрочного феррито-перлитного (в) чугунов

 

 

 

Рисунок 8.4 – Форма графитовых включений и металлическая основа серого, ковкого и высокопрочного чугунов

 

Микроструктура ковких чугунов. Ковкий чугун получают из белого чугуна с помощью специального графитизирующего отжига при температурах 950-1000 °С. В результате такого отжига цементит (Fе3С), как метастабильная фаза, распадается на аустенит и графит (углерод отжига). Графит в ковком чугуне образуется в виде хлопьевидных включений, кото­рые хорошо видны в микроскоп (рис. 8.3 б).

Металлическая основа ковкого чугуна может быть ферритной, ферритно-перлитной, перлитной (рис. 8.4) в зависимости от режимов графитизирующего отжига. В соответствии с этим, различают ков­кий чугун ферритный, феррито-перлитный и перлитный (см. атлас микроструктур). В процессе графитизирующего отжига белого чугуна изменяют­ся и механические свойства. Ковкий чугун по сравнению с белым обладает большей пластичностью и прочностью.

Микроструктура высокопрочных чугунов. Придание графитным включениям округлой (шаровидной) формы (рис. 8.3 в) снижает кон­центрацию напряжений перед включениями, способствует повышению прочности чугуна. Такой формы графита добиваются путем модифицирования – введения в расплавленный чугун пыли магния (0,03-0,7 % от веса чугуна).

Металлическая основа высокопрочных чугунов включает те же типы структур, что и в случае ковких и серых чугунов (рис. 8.4). Соответственно и названия: ферритный, феррито-перлитный и перлитный высокопрочные чугуны (см. атлас микроструктур).

 

Задание

1. Изучить по атласу микроструктуры доэвтектического, эвтек­тического и заэвтектического белых чугунов в равновесном состоянии.

2. Изучить по атласу микроструктуры ковкого, серого и высокопроч­ного чугунов до и после травления.

3. Изучить микроструктуру вышеуказанных чугунов с помощью оптического микроскопа и набора микрошлифов и зарисовать наиболее характерные микроструктуры, наблюдае­мые в микроскоп.

4. Начертить правую часть диаграммы состояния Fе-С, провести на ней линии, соответствующие доэвтектическому, эвтектическому и заэвтектическому белым чугунам и дать описание процессов формирования структуры при охлаждении сплавов.

5. Написать отчет по работе в соответствии с пунктами 1-4 задания.

 

Контрольные вопросы

1. Какие сплавы называют чугунами и какую область диаграммы состояния  Fе-С охватывают чугуны?

2. Как подразделяются белые чугуны в равновесном состоянии в зависимости от содержания в них углерода?

3. Какую структуру имеют доэвтектический, эвтектический и заэвтектический белые чугуны при высоких и при комнатной тем­пературах?

4. Как получают ковкий чугун? Какую он имеет форму графитовых включений? Какова может быть металлическая основа?

5. Какую форму графитовых включений и металлическую основу имеет серый чугун?

6. Как получают высокопрочный чугун? Чем обусловлены его бо­лее высокие (по сравнению с другими чугунами) механические свойства? Какую металлическую основу может иметь высокопрочный чугун?

7. Перечислите преимущества чугунов по сравнению со сталями.

Часть 2


Дата добавления: 2018-04-05; просмотров: 317; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!