Тема: Элементы теории ошибок измерений
Классификация ошибок измерений.
Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей ее точность. Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.
При геодезических измерениях неизбежны ошибки. Эти ошибки бывают грубые, систематические и случайные.
К грубым ошибкам относятся просчеты в измерениях по причине невнимательности наблюдателя или неисправности прибора, и они полностью должны быть исключены. Это достигается путем повторного измерения.
Систематические ошибки происходят от неизвестного источника, имеют определенный знак и величину и их можно учесть при измерениях и вычислениях.
Случайные ошибки обусловлены разными причинами и полностью исключить их из измерений нельзя. Поэтому возникают две задачи: как из результатов измерений получить наиболее точную величину и как оценить точность полученных результатов измерений. Эти задачи решаются с помощью теории ошибок измерений.
В основу теории ошибок положены следующие свойства случайных ошибок:
|
|
1. Малые ошибки встречаются чаще, а большие реже.
2. Ошибки не превышают известного предела.
3. Положительные и отрицательные ошибки, одинаковые по абсолютной величине,
одинаково часто встречаются.
4. Сумма ошибок, деленная на число измерений, стремится к нулю при большом числе
измерений.
По источнику происхождения различают ошибки приборов, внешние и личные.
Ошибки приборов обусловлены их несовершенством, например погрешность угла, измеренного теодолитом, неточным приведением в вертикальное положение оси его вращения.
Внешние ошибки происходят из-за влияния внешней среды, в которой протекают измерения, например погрешность в отсчете по нивелирной рейке из-за изменения температуры воздуха на пути светового луча (рефракция) или нагрева нивелира
солнечными лучами.
Личные ошибки связаны с особенностями наблюдателя, например, разные наблюдатели по-разному наводят зрительную трубу на визирную цель. Так как грубые погрешности должны быть исключены из результатов измерений, а систематические исключены или ослаблены до минимально допустимого предела, то проектирование измерений с необходимой точностью и оценку результатов выполненных измерений производят, основываясь на свойствах случайных погрешностей.
|
|
,
Арифметическая средина.
Если одна величина измерена n раз и получены результаты: l1, l2, l3, l4, l5, l6,….., ln,
то
Величина x называется арифметической срединойили вероятнейшим значением измеренной величины. Разности между каждым измерением и арифметической срединой называют вероятнейшими ошибками измерений:
l1 – x = v1
l2 – x = v2
l3 – x = v3
. . . . . . . .
ln – x = vn
Или в общем виде получим:
[ l ] – nx = [v]
Тогда [v] = 0.
Средняя квадратическая ошибка.
Точность результатов измерений оценивается средней квадратической ошибкой. Средняя квадратическая ошибка одного измерения вычисляется по формуле:
[v2]
m = √ n - 1
где [v2] – сумма квадратов вероятнейших ошибок; n – число измерений.
Средняя квадратическая ошибка арифметической середины вычисляется по формуле:
m [v2]
M = ----------- = √ --------------
|
|
√n n ( n – 1 )
Предельная ошибка не должна превышать утроенной средней квадратической ошибки, т.е.
ε = 3m.
Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной ошибки. Относительной ошибкой называется отношение абсолютной ошибки к значению самой измеренной ве-
личины. Относительную ошибку выражают в виде простой дроби, числитель которой — единица, а знаменатель — число, округленное до двух-трех значащих цифр с нулями. Например, относительная средняя квадратическая погрешность измерения линии длиной
l = 110 м, при m = 2 см равна m/l = 1/5500.
Дата добавления: 2018-04-05; просмотров: 859; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!