Методы изучения антибиотикочувствительности



Метод бумажных дисков (диско-дуффузионный)

Методика.Бактериальную культуру засевают газоном на питательный агар в чашку Петри.На засеянную поверхность пинцетом помещают на одинаковом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посев инкубируют при 37°С до следующего дня. По диаметру зон задержки роста бактерий определяют ее чувствительность к антибиотикам.

Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов.

Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувствительность методом серийных разведений.

 

Оценка результатов определения чувствительности микроорганизмов к антибиотикам методами дисков и серийных разведений

Антибиотик

Метод дисков: диаметры зон задержки роста на среде АГВ (агар Гурьева-Васильева)

Метод серийных разведений: минимальная ингибирующая концентрация мкг/мл

Устойчивые Умеренно устойчивые Чувстви- тельные Устойчивые Чувстви- тельные
Бензилпенициллин ≤ 20 21-28 ≥ 29 - ≤ 0.1
Ампициллин ≤ 20 21-28 ≥ 29 - ≤ 0.2
Карбенициллин ≤ 14 15-18 ≥ 19 ≥ 32 ≤ 16
Метициллин ≤ 13 14-18 ≥ 19  - ≤ 3
Оксациллин ≤ 15 16-19 ≥ 20 - ≤ 3
Цефалексин - - - ≥ 32 ≤ 10
Цефалотин ≤ 14 15-18 ≥ 19 ≥ 32 ≤ 10
Стрептомицин ≤ 16 17-19 ≥ 20 ≥ 15 ≤ 6
Неомицин ≤ 12 13-16 ≥ 17 - ≤ 10
Канамицин ≤ 14 15-18 ≥ 19 ≥ 25 ≤ 6
Мономицин ≤ 13 14-17 ≥ 18 - ≤ 10
Гентамицин ≤15   ≥ 16 ≥ 6 ≤ 4
Тетрациклин ≤ 16 17-20 ≥ 22 ≥ 12 ≤ 2
Эритромицин ≤ 17 18-21 ≥ 22 ≥ 8 ≤ 2
Линкомицин ≤ 19 20-23 ≥ 24 ≥ 8 ≤ 2
Левомицетин ≤ 15 16-18 ≥ 19 ≥ 16 ≤ 8
Рифампицин ≤ 12 13-15 ≥ 16 ≥ 8 ≤ 2
Полимиксин ≤ 11 12-14 ≥ 15 ≥ 50 Ед/мл -
Ристомицин ≤ 9 10-11 ≥ 12 - ≤ 5

Метод серийных разведений

Данным методом определяют минимальную ингибирующую концентрацию (МИК) антибиотика рост исследуемой культуры бактерий.

Методика. Готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят последующие разведения в бульоне (в объеме 1 мл), после чего к каждомуразведению добавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 106-107 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульонаи 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37°С до следующего дня, после чего отмечают результаты опыта по помутнению питательной среды, сравнивая с контролем культуры. Последняя пробирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий, под влиянием содержащейся в ней минимальной ингибирующей концентрации антибиотика.Оценку результатов определения чувствительности микроорганизмов к антибиотикам проводят по таблице, которая содержит значения МИК антибиотиков для устойчивых и чувствительных штаммов.

Кчувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаруживаемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных доз препарата Устойчивыми являются микроорганизмы, рост которых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

 

Номер пробирки Разведение антибиотика Концентрация антибиотика, мкг/мл Исследуемая культура, мл Рост бактерий (помутнение среды)
1 1:100 100 0,1 -
2 1:200 50 0,1 -
3 1:400 25 0,1 -
4 1:800 12,5 0,1 -
5 1:1600 6,25 0,1 +
6 1:3200 3,12 0,1 +
7

1 мл бульона без антибиотика

0,1 + (контроль)

Схема описания антибиотиков

Название препарата ………………….

Классификационное положение:антибиотик

Действующее начало: антибиотик (механизм действия на микробную клетку)

Получение: путем биосинтеза

                 полусинтетические

                 путем химического синтеза

Применение: лечение инфекций

Способ применения: перорально;  парентерально; местное применение

 

К работе № 3

Плазмиды. Распространенность. Методы выявления

У бактерий имеется одна замкнутая кольцевая хромосома, содержащая до 4000 отдельных генов, необходимых для поддержания жизнедеятельности и размножения бактерий, т. е. бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением. Обычная бактериальная хромосома имеет молекулярную массу около 1010 Д (5х106 пар оснований; размер генома человека составляет 2,9х109 пар оснований). Длина бактериальной хромосомы в развернутом состоянии, впервые установленная методом радиоавтографии, для клеток E.coli составляет около 1 мм.

В некоторых бактериях обнаруживают внехромосомные молекулы ДНК, представленные плазмидами, транспозонами и инсерционными (вставочными) последовательностями. Они не являются жизненно необходимыми, т. е. не кодируют информацию о синтезе ферментов, участвующих в энергетическом и пластическом метаболизме. Плазмиды физически либо не связаны с хромосомой (автономное состояние), либо встроены в бактериальную хромосому (интегрированное состояние). В автономном состоянии они самостоятельно реплицируются. Транспозоны и инсерционные последовательности (Is-посл.) во всех случаях связаны с хромосомой и не способны к самостоятельной репликации. Is-элементы несут информацию только для собственного перемещения, транспозоны, кроме того, имеют в составе структурные гены, кодирующие синтез токсинов, ферментов, расщепляющих углеводы, антибиотики.

Плазмиды - фрагменты ДНК с молекулярной массой 106 - 108 Д, несущие от 40 до 50 генов, несут 2 функции - регуляторную и кодирующую. Первая состоит в компенсации нарушений метаболизма ДНК клетки хозяина. Например, при интегрировании плазмиды в состав поврежденного бактериального генома, не способного к репликации, его функция восстанавливается за счет плазмидногорепликона. Кодирующая функция плазмид состоит во внесении в бактериальную клетку новой информации, о которой судят по приобретенному признаку, например образованию пилей (F-плазмиды), резистентности к а/б (R-плазмиды), выделению бактериоцинов (col-плазмида).

Конъюгативныеплазмиды - переносятся от бактерии к бактерии (обычно внутри вида или близкородственными видами) в процессе конъюгации, обычно это относительно крупные F-, R-, Col-плазмиды (чаще выявляются у Гр- палочек).

Неконъюгативныеплазмиды - обычно характерны для Гр+ кокков, но могут встречаться и у Гр - микроорганизмов; небольшие по размерам могут присутствовать до 30 на 1 клетку.Неконъюгативныеплазмиды тоже могут быть перенесены из клетки в клетку при наличии в бактерии одновременно конъюгативных и неконъюгативныхплазмид.

R-плазмиды обусловливают устойчивость к лекарственным препаратам, например к сульфаниламидам, стрептомицину, пенициллину, тетрациклину, либо устойчивость к тяжелым металлам (ртуть, никель, кадмий, кобальт).R-плазмиды выявляют постановкой чувствительности бактерий к антибиотикам методом диффузии в агар из бумажных дисков.

F-плазмиды - удвоение ДНК некоторых плазмид индуцирует деление бактерий, т.е. увеличивает их «плодовитость». Интегрированные в бактериальную хромосому F-плазмиды называют Hfr-плазмиды (от англ. Highfrequencyofrecombitions - высокая частота рекомбинации). F-плазмида контролирует синтез половых ворсинок (sex илиFpili), которые способствуют эффективному спариванию бактерий-доноров с реципиентными клетками при конъюгации.

Col-плазмиды - контролируют синтез особого рода антибактериальных веществ белковой природы - бактериоцинов, способных вызывать гибель бактерий того же вида или близких видов.Бактериоцины обнаружены у кишечной палочки (колицины), бактерий чумы (пестицины), холерных вибрионов (вибриоцины), стафилококков (стафилоцины). Известно более 200 различных бактериоцинов.

Роль этих продуктов связана с формированием микробных сообществ (напрмер, в кишечнике человека бактериоциныE. coli вызывают гибель патогенных энтеробактерий). Бактериоциногения более выражена у Гр- микроорганизмов, но распространена и у Гр+ бактерий.

Способность к синтезу бактериоцинов используют в эпидемиологических исследованиях, выявляя тип колицина, вырабатываемого патогенным видом (колицинотипирование), либо тип плазмиды (колициногенотипирование).

Плазмиды биодеградации - данные плазмиды несут информацию об утилизации некоторых органических соединений, которые бактерии используют в качестве источников углевода и энергии. Они могут играть важную роль в экологии патогенных бактерий, обеспечивая им селективные преимущества во время пребывания в объектах окружающей среды и в организме человека. Например, урологические штаммы кишечных палочек содержат плазмидугидролизации мочевины.

Плазмиды патогенности - контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-,R-,Col-плазмиды в интегрированном состоянии включают tox+транспозоны, кодирующие токсинообразование. Нередко tox+транспозоны кодируют синтез интактныхпротоксинов (например, дифтерийного или ботулинического), активируемых клеточными протеазами, образование которых контролируют гены бактериальных хромосом.


Дата добавления: 2018-04-04; просмотров: 1120; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!