Дискретные случайные величины



 

10) В денежной лотерее выпущено 100 билетов. Разыгрывается четыре выигрыша по 5 тысяч рублей; пять выигрышей по 4 тысячи рублей и одиннадцать выигрышей по 1 тысячи рублей.

а) Составить ряд распределения случайной величины X – размер выигрыша по одному купленному билету.

б) Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины.

в) Записать функцию распределения и построить ее график.

Решение

а) Случайная величина X – размер выигрыша по одному купленному билету.

Возможные значения случайной величины:

0; 1; 4; 5.

Вероятность выиграть 5 тысяч рублей по одному билету:

Аналогично определяются вероятности остальных значений случайной величины.

Ряд распределения имеет вид:

X 0 1 4 5
p 0,8 0,11 0,05 0,04

 

б) Найдем числовые характеристики случайной величины.

 

Ответ:

 

 

Задания для самостоятельной работы

Теоремы сложения и умножения вероятностей

Варианты 1-10 (N – номер варианта)

В урне N белых и (25 – N) черных шаров. Из урны последовательно достают два шара. Найти вероятность того, что:

1) шары будут разных цветов, если шары возвращают в урну;

2) шары будут одинакового цвета, если шары не возвращают в урну;

3) хотя бы один шар будет белым, если шары не возвращают в урну.

Варианты 11-20 (N – номер варианта)

В урне (N – 6) белых и (31 – N) черных шаров. Из урны последовательно достают все шары. Найти вероятность того, что

1) третьим по порядку будет вынут белый шар;

2) из первых трех шаров хотя бы один будет белым шаром.

Варианты 21-30 (N – номер варианта)

В урне (N – 16) белых и 5 черных шаров и (36 – N) красных шаров. Три из них вынимаются наугад. Найти вероятность того, что по крайней мере два из них будут разноцветными при условии: а) шары возвращаются в урну; б) шары не возвращаются в урну.

 

Формула полной вероятности. Формула Байеса

Варианты 1-10 (N – номер варианта)

Имеются три одинаковые с виду урны. В первой N белых шаров и
(25 – N) черных шаров; во второй урне (20 – N) белых и (N + 5) черных; в третьей только белые шары. Из наугад выбранной урны достают один шар. Какова вероятность, что этот шар белый?

Варианты 11-20 (N – номер варианта)

Имеются две урны: в первой (N – 5) белых шаров и (30 – N) черных шаров; во второй урне (21 – N) белых и (N + 4) черных. Из первой урны во вторую перекладывают, не глядя, один шар. После этого из второй урны достают один шар. Найти вероятность того, что этот шар будет белым.

Варианты 21-30 (N – номер варианта)

Имеются три урны: в первой (N – 15) белых шаров и (35 – N) черных шаров; во второй урне (40 – N) белых и (N – 20) черных; в третьей – N белых шаров (черных нет). Из наугад выбранной урны достали один шар. Этот шар оказался белым. Найти вероятность того, что шар достали из первой урны.

 

Формула Бернулли


Дата добавления: 2018-04-04; просмотров: 116;