Доказательства роли ДНК в передаче наследственной информации (опыты по трансформации и трансдукции у бактерий)



Генетические явления на молекулярном уровне (основы молекулярной генетики). Хромосомная теория наследственности закрепила за генами роль элементарных наследственных единиц, локализованных в хромосомах. Однако химическая природа гена долго еще оставалась неясной. В настоящее время известно, что носителем наследственной информации является ДНК.Убедительные доказательства того, что именно с ДНК связана передача наследственной информации, получены при изучении вирусов. Проникая в клетку, они вводят в нее лишь нуклеиновую кислоту с очень небольшой примесью белка, а вся белковая оболочка остается вне зараженной клетки. Следовательно, введенная в клетку ДНК передает генетическую информацию, необходимую для образования нового поколения вируса такого же вида.

Далее было обнаружено, что чистая нуклеиновая кислота вируса табачной мозаики может заразить растения, вызывая типичную картину заболевания. Более того, удалось искусственно создать вегетативные «гибриды» из вирусов, в которых белковый футляр принадлежал одному виду, а нуклеиновая кислота - другому. В таких случаях генетическая информация «гибридов» всегда в точности соответствовала тому вирусу, чья нуклеиновая кислота входила в состав «гибрида». Доказательства генетической роли ДНК были получены и в ряде опытов по заражению бактериальных клеток вирусами. Вирусы, поражающие бактерии, называют бактериофагами (или просто фагами). Они состоят из белковой капсулы правильной геометрической формы и молекулы нуклеиновой кислоты, свернутой в виде спирали. Хорошо изучен жизненный цикл у фага Т2 (ДНК-содержащий вирус), размножающегося внутри бактерии кишечной палочки. Фаг прикрепляется своим отростком к клеточной оболочке, с помощью ферментов разрушает участок клеточной мембраны и через образовавшееся отверстие вводит свою ДНК в клетку. Попав внутрь клетки, нуклеиновая кислота вируса приводит к извращению нормальной работы клетки, прекращается синтез собственных бактериальных белков, и весь контроль над биохимическим аппаратом клетки переходит к вирусной ДНК.

Из имеющихся в клетке аминокислот и нуклеотидов синтезируются белковые капсулы, идет репродукция ДНК, т. е. образуются новые зрелые фаговые частицы, их количество быстро увеличивается. Жизненный цикл фага заканчивается выходом фаговых частиц в окружающую среду и распадом клетки. Такие фаги называются вирулентными. Когда белок фага был помечен радиоактивной серой (35S), а ДНК - радиоактивным фосфором (32Р), оказалось, что вновь образованные фаги содержали только радиоактивный фосфор, которым была помечена ДНК, а частиц 35S не было обнаружено ни у одной фаговой частицы. Эти опыты наглядно показали, что генетическая информация от внедрившегося фага его потомкам передается только проникающей в клетку нуклеиновой кислотой, а не белком, содержащимся в капсуле вируса. Важные доказательства роли ДНК в передаче наследственной информации были получены на микроорганизмах в явлениях трансформации и трансдукции. Трансформация - включение чужеродной ДНК в бактериальную клетку. Это перенос наследственной информации от одной клетки прокариотов к другой посредством ДНК бактерии-донора или клетки-донора. Явление трансформации было обнаружено в опытах английского микробиолога Гриффитса (1928), работавшего с двумя штаммами пневмококка. Они отличаются по внешнему виду и болезнетворным свойствам. Штамм S имеет капсульную оболочку и отличается высокой вирулентностью. При введении этих бактерий подопытным мышам последние заболевали инфекционной пневмонией и погибали. Клетки штамма R отличаются отсутствием капсульных оболочек, при введении их животным гибели не наступало.

Если клетки вирулентного штамма подвергали действию высокой температуры, то они становились безвредными и также не вызывали заболевания. Но совершенно неожиданный результат получил Гриффитс, когда ввел мышам смесь из невирулентного и убитого нагреванием вирулентного штаммов. Подопытные животные заболели пневмонией и погибли, как и мыши, получившие инъекцию живых 5-бактерив. Из крови тех я других мышеи были выделены живые S-пневмококки. Таким образом, оказалось, что свойства убитых бактерий - наличие капсулы и способность вызывать острое заболевание (вирулентность) передались от убитых к живым бактериям, произошла трансформация штамма R в штамм S. Поскольку клетки S были убиты нагреванием, то, следовательно, фактором, вызывающим трансформацию, было вещество небелковой природы. Удалось получить трансформацию бактерий и в условиях in vitro, вне организма. Однако, что представляет собой трансформирующий фактор, в то время осталось невыясненным. Только в 1944 г. группа американских генетиков под руководством О. Эвери с помощью биохимического анализа показали, что этим фактором является ДНК. Если ДНК бактерий-доноров разрушалась ферментом дезоксирибонуклеазой, то трансформация не происходила. Эти опыты были подтверждены в отношении многих наследственных признаков у бактерий, в частности, именно этот процесс лежит в основе превращения не устойчивых к стрептомицину клеток пневмококков в стрептомициноустойчивые. Механизм трансформации заключается в рекомбинации между молекулами ДНК клеток двух штаммов. Опыты по бактериальной трансформации и расшифровке природы трансформирующего фактора имели выдающееся значение для развития молекулярной генетики, поскольку был сделан вывод, что в явлениях наследственности ведущая роль принадлежит ДНК. Расшифровка процесса бактериальной трансформации имеет и непосредственное практическое значение для медицинской микробиологии. Трансдукция (лат. transductio - перемещение) заключается в том, что вирусы, покидая бактериальные клетки, в которых они паразитировали, могут захватывать с собой часть их ДНК и, перемещаясь в новые клетки, передавать новым хозяевам свойства прежних. Это явление впервые было получено в опытах по заражению бактерий вирусами.

Долгое время считали, что взаимоотношения вируса и бактериальной клетки могут быть только приводящими бактерию к гибели. Однако впоследствии было обнаружено, что, поражая бактерию, не все фаги приводят ее к активному разрушению. Это так называемые умеренные фаги. Они могут вести себя в клетке и как вирулентные, но могут объединяться с бактериальным геномом, встраивая свою ДНК в хромосом) клетки-реципиента. В таком состоянии размножения фага не происходит, он становится профагом и реплицируется (воспроизводится) вместе с хромосомой бактерии. Бактерия остается неповрежденной, не лизируется. Такие штаммы бактерии называются лизогенными (гр. lisis - растворение), так как они несут в себе фактор, угрожающий целостности бактериальных клеток, вызывающий их разрушение, растворение.

Профаг можeт воспроизводиться вместе с бактериальной хромосомой при соблюдении постоянных внешних условий в течение многих клеточных поколений. Однако в какой-то момент профаг освобождается из хромосомы бактерии и начинает автономно реплицироваться с образованием новых фаговых частиц, т. е. профаг перешел в вирулентное состояние. При этом, освобождаясь от связи с ДНК клетки-реципиента, фаговые частицы могут случайно захватить небольшие близлежащие участки бактериальной хромосомы с находящимися в них генами. Попадая в клетки другого штамма бактерий, вирусы вносят в их геном «чужие» бактериальные гены и передают новым клеткам-хозяевам свойства тех, в которых они ранее паразитировали.

Встраивание профага происходит путем кроссинговера между фаговой и бактериальной хромосомами. Таким образом, генотип клеток-реципиентов может измениться, они приобретут какие-то свойства клеток первого штамма. Явление трансдукции было обнаружена в опытах с бактериями из различных штаммов. V-образная трубка в нижней части была разделена бактериальным фильтром. В одной половине ее находились бактерии кишечной палочки, имеющие фермент, расщепляющий лактозу и содержащие пгофаг (ген lac+), а в другой половине - штамм, не обладающий этим ферментом (ген lac-). Бактериальные клетки не могли проникать через перегородку. Через некоторое время при анализе клеток второго штамма оказалось, что среди них появились формы lac+. Перенос гена мог произойти только с помощью вируса, находившегося в лизогенном штамме и приступившего к размножению. Этот вирус, проникнув через бактериальный фильтр, внес ген lac+ в бактериальные клетки, т. е. произошла трансдукция. Процесс трансдукции является не только подтверждением генетической роли ДНК, он используется для изучения структуры хромосом, тонкого строения гена и, как будет показано ниже, является одним из важнейших методов, применяемых в генной инженерии. Итак, изучение химической структуры ДНК и ее генетических функций позволяет ныне рассматривать гены как участки нуклеиновой кислоты, характеризующиеся определенной специфической последовательностью нуклеотидов. Расшифровка материальной сущности гена - одно из важных достижений современной биологической науки.

 

 

Геномика - раздел молекулярной генетики, посвящённый изучению генома и генов живых организмов. Современные представления о геноме человека: организация и характеристика генома, классификация генов в геноме. Программа «Геном человека», ее практическое значение. Успехи и научные перспективы.

Комплексное изучение структуры и функции генома привело к формированию самостоятельной научной дисциплины, названной «геномикой». Предмет этой науки -строение геномов человека и других живых существ (растений, животных, микроорганизмов и др.), задача - применить полученные знания для улучшения качества жизни человека. В рамках этой новой научной дисциплины проводятся исследования по функциональной геномике, сравнительной геномике, а также по генетическому разнообразию человека.

Важнейший элемент геномных исследований — характеристика различных генов, составляющих эти геномы, изучение механизмов их регуляции, взаимодействия друг с другом и с факторами среды в норме и при патологии. Охарактеризовать таким образом как можно большее количество генов - основная задача функциональной геномики. Анализ любого генома включает определение нуклеотидной последовательности, белковых продуктов генов, изучение взаимодействия разных генов и белков и механизма регуляции всей системы. После расшифровки генома усилия исследователей фокусируются на изучении белковых продуктов генов. Еще одно важное направление функциональной геномики — траискриптомика — изучает координированную работу генов, образование первичных транскриптов, процессы сплайсинга и формирования зрелых мРНК.

Геном человека — геном биологического вида Homo sapiens. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — X-хромосома и Y-хромосома — определяют пол (XY — у мужчин или ХХ — у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар оснований нуклеотидов ДНК, образующих 20 000—25 000 генов.

В ходе выполнения проекта «Геном человека»содержимое хромосом находящихся в стадии интерфаза в клеточном ядре (вещество эухроматин), было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру в биомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта.

По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.

Интересно,что число генов человека не намного превосходит число генов у более простых модельных организмов, например, круглого червя или мухи . Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК, рибосомную РНК и прочие не кодирующие белок РНК последовательности.

Классификация генов

1)По характеру взаимодействия в аллельной паре:

- доминантный (ген, способный подавлять проявление аллельного ему рецессивного гена);

- рецессивный (ген, проявление которого подавлено аллельным ему доминантным геном).

2)Функциональная классификация:

- структурные

кодирующие белки

кодирующие т-РНК

кодирующие р-РНК

-рецепторные

гены-интенсификаторы (повышают активность некоторых генов)

гены-репараторы (гены, исправляюшие дефекты (мутации) ДНК)

гены-ингибиторы (подавляют антивность генов)

Проект по расшифровке генома человека - международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20-25 тыс. генов в человеческом геноме.

Перспективы

Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается, что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии. Ясные практические результаты проекта появились ещё до завершения работы. Несколько компаний начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак груди, нарушения свёртываемости крови, кистозный фиброз, заболевания печени и многим другим. Также ожидается, что информация о геноме человека поможет поиску причин возникновения рака, болезни Альцгеймера и другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.

Также ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму рака может сузить свой поиск до одного гена. Посетив базу данных человеческого генома в сети, этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трёхмерную структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.

Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры.

 

 

Ген - функциональная единица наследственной информации. Дискретность гена (цистрон, рекон, мутон). Моно- и полицистронная модели генов. Понятие о транскриптоне и опероне, их структура (промотор, оператор, терминатор и т.д.).

Ген — функциональная единица наследственного материала. Взаимосвязь

между геном и признаком

Долгое время ген рассматривали как минимальную часть наследственного

материала (генома), обеспечивающую развитие определенного признака у

организмов данного вида. Однако каким образом функционирует ген, оставалось

неясным. В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза,

которую можно выразить формулой ≪Один ген — один фермент≫. Согласно этой

гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.

Позднее было показано, что многие белки имеют четвертичную структуру, в

образовании которой принимают участие разные пептидные цепи. Например,

гемоглобин взрослого человека включает четыре глобиновых цепи — 2α и 2β,

кодируемые разными генами. Поэтому формула, отражающая связь между геном и

признаком, была несколько преобразована: ≪Один ген —один полипептид≫.

Изучение химической организации наследственного материала и процесса

реализации генетической информации привело к формированию представления о

гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК,

которая кодирует аминокислотную последовательность пептида или имеет

самостоятельное значение (тРНК и рРНК).

Открытия экзон-интронной организации эукариотических генов и

возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная

последовательность первичного транскрипта может обеспечить синтез нескольких

полипептидных цепей с разными функциями или их модифицированных аналогов.

Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий

дыхательный фермент цитохром b. Он может существовать в двух формах (рис.

3.42). ≪Длинный≫ ген, состоящий из 6400 п. н., имеет 6 экзонов общей

протяженностью 1155 п.н. и 5 интронов. Короткая форма гена состоит из 3300 п.н. и

имеет 2 интрона. Она фактически представляет собой лишенный первых трех

интронов ≪длинный≫ ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона ≪длинного≫ гена box на основе

объединенной нуклеотидной последовательности двух первых экзонов и части

нуклеотидов второго интрона образуется матрица для самостоятельного белка —

РНК-матуразы Функцией РНК-матуразы является обеспечение

следующего этапа сплайсинга — удаление второго интрона из первичного

транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного

транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная

форма антител имеет на С-конце длинный ≪хвост≫ аминокислот, который

обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого

хвоста нет, что объясняется удалением в ходе сплайсинга из первичного

транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно

являться частью другого гена или некоторая нуклеотидная последовательность ДНК

может быть составной частью двух разных перекрывающихся генов. Например, на

физической карте генома фага ФХ174 видно, что последовательность

гена В располагается внутри гена А, а ген Е является частью последовательности

гена D. Этой особенностью организации генома фага удалось объяснить

существующее несоответствие между относительно небольшим его размером (он

состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех

синтезируемых белках, которое превышает теоретически допустимое при данной

емкости генома. Возможность сборки разных пептидных цепей на мРНК,

синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается

наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет

начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а

ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены,

транслируемые как со сдвигом рамки, так и в той же рамке считывания.

Предполагается также возможность транскрибирования двух разных мРНК с обеих

комплементарных цепей одного участка ДНК. Это требует наличия промоторных

областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль

молекулы ДНК. Описанные ситуации, свидетельствующие о допустимости считывания разной

информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных

пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена.

Очевидно, нельзя больше говорить о гене как о непрерывной последовательности

ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее

время наиболее приемлемой все же следует считать формулу ≪Один ген — один

поли-пептид≫, хотя некоторые авторы предлагают ее переиначить: ≪Один

полипептид — один ген≫. Во всяком случае, под термином ген надо понимать

функциональную единицу наследственного материала, по химической природе

являющуюся полинуклеотидом и определяющую возможность синтеза

полипептидной цепи, тРНК или рРНК.

дискретность — несмешиваемость генов

Цистрон — устаревший термин, обозначающий участок ДНК, ответственный за синтез определённого белка.

У прокариот гены, выполняющие сходные метаболические функции, часто располагаются в функциональные единицы, называемые оперонами и их экспрессия регулируется совместно (полицистронный механзим регуляции активности генов).

Для эукариот термин «цистрон» не применяется. Для эукариот понятия «ген» и «цистрон» в настоящее время являются синонимами. У эукариот гены, отвечающие за последовательные стадии метаболического пути, могут располагаться как рядом, так и в самых разных участках генома, на разных хромосомах. Полицистронный механизм регуляции активности генов для эукариот не существует, и экспрессия генов, располагающихся рядом, регулируются независимо.

Рекон — наименьший неделимый элемент в нитевидной структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации.

Мутации подвергается участок ДНК, ответственный за синтез определённого белка — цистрон. Сам цистрон состоит из более мелких единиц мутации — мутонов (соответствует кодону — триплету, кодирующему аминокислоты). Однако, мутация может затронуть и отдельный нуклеотид, являющийся элементарной единицей генетической информации. В терминах классической генетики эти единицы соответствуют реконам.

Мутон — обычно определяется как единица мутации.

При возникновении спонтанной или индуцированной мутации в пределах структурного гена (цистрона) аминокислотный состав синтезируемого белка может измениться; иногда изменение в молекуле белка касается лишь одного аминокислотного остатка. Таким образом мутону, как единице мутации соответствует триплет ДНК, состоящий из трёх нуклеотидов (то есть кодон).

Однако, если мутация связана с изменением не одного, а нескольких аминокислотных остатков в молекуле белка, то тогда мутону будет соответствовать не один, а несколько триплетов, входящих в состав цистрона ответственного за синтез данного белка.

 

 


Дата добавления: 2018-02-28; просмотров: 3930; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!