Комплекс Гольджи, структурная организация и значение



Комплекс Гольджи (аппарат Гольджи). В 1898 г. итальянский ученый К. Гольджи выявил в нервных клетках сетчатые образования. Позднее эти структуры были обнаружены практически во всех клетках эукариот и их стали называть комплексом Гольджи. Это обусловлено большим многообразием функций, которые выполняет этот органоид. Так практически любые клетки должны постоянно обновлять поверхностные мем­браны, образовывать лизосомы. Во всех этих процессах важнейшая роль принадлежит комплексу Гольджи. Несмотря на разнообразие формы этого органоида, строение его сходно в клетках эукариот. Структурной единицей органоида является диктиосома. В диктиосоме плотно друг к другу расположены 5-10 плоских цистерн, между которыми располагаются тонкие прослойки цитоплазмы. Каждая цистерна имеет переменную толщину. В центре мембраны могут быть сближены (до 25 нм), а на периферии иметь расширения. Кроме плотно расположенных плоских цистерн, в зоне комплекса Гольджи наблюдается множество мелких пузырьков (везикул), которые встречаются главным образом в его периферических участках. В зоне диктиосомы различают проксимальный и дистальный участки. В секретирующих клетках проксимальная часть обычно обращена к ядру, дистальная - к поверхности клетки. В проксимальном участке к цистернам примыкает зона мелких гладких пузырьков и коротких мембранных цистерн. Дистальная часть характеризуется наличием крупных вакуолей, часто содержащих продукты клеточ­ной секреции. Мембраны проксимальной и дистальной частей различаются по толщине: первые имеют толщину 6-7 нм, вторые - до 10 нм. Мембраны комплекса Гольджи образуются при участии гранулярной эндоплазматической сети.

Во время деления клеток диктиосомы пассивно и случайно распределяются по до­черним клеткам. При росте клеток общее количество диктиосом увеличивается.

Комплекс Гольджи выполняет в клетке разнообразные функции:

1. Концентрация и уплотнение экзогенных и эндогенных веществ (упаковочный центр). Эта функция комплекса Гольджи заключается в том, что синтезированный на рибосомах эргастоплазмы белок отделяется и накапливается внутри цистерн эндоплазматической сети. По цистернам он транспортируется к зоне мембран пластинчатого комплекса. После концентрации и уплотнения от ампулярных расширений цистерн комплекса Гольджи отщепляются пузырьки, содержащие эти белки. Такие везикулы также могут сливаться друг с другом и увеличиваться в размерах, образуя секреторные гранулы. После этого секреторные гранулы передвигаются к плазмолеммы, и, таким образом, содержимое гранул оказывается за пределами клетки. При этом процессе отдельные мелкие пузырьки с готовым продуктом отделяются от диктиосом. Затем они или разносятся по цитоплазме для внутреннего потребления клетки или сливаются в секреторные вакуоли. Эти вакуоли двигаются к поверхности клетки, где их мембрана сливается с плазматической и таким образом осуществляется выделение содержимого этих вакуолей за пределы клетки. Таким образом, аппарат Гольджи являет­ся промежуточным звеном между собственно синтезом секретируемого белка и выведением его из клетки.

2. Образование и регенерация плазматической мембраны. Так в полости комплекса Гольджи поступают молекулы целлюлозы, которые перемещаются на поверхность клетки и включаются в клеточную оболочку. В аппарате Гольджи растительных клеток происходит синтез полисахаридов матрикса клеточной стенки (гемицеллюлозы, пекти­ны).

3. Модификация белков. В зоне комплекса Гольджи большинство белков подвергается модификации, заключающейся в образовании гликопротеидов и липопротеидов.

4. Образование первичных лизосом.

Лизосомы, классификация, строение и значение

Лизосомы (греч. “лизео” - растворяю, “сома” - тело). Лизосомы были открыты в 1955 г. французским ученым де Дювом при изучении клеток печени методом фракционного центрифугирования. В дальнейшем применение биохимических, цитохимических и электронно-микроскопических методов позволило детально изучить строение, функционирование и происхождение этих структур. Лизосомы представляют собой пузырьки диаметром от 0,2 до 1 мкм, содержащие различные ферменты. Всего в лизосомах обнаружено около 50 гидролитических ферментов(протеиназы, нуклеазы, глюкозидазы, фосфатазы, липазы и др.). Маркерным ферментом является кислая фосфатаза. Это самые мелкие мембранные органоиды, встречающиеся практически у всех эукариот. Однако частота встречае­мости лизосом варьирует в зависимости от типа клеток. Так в тканях животных лизосомы чаще встречаются в клетках, поглощающих белковые и другие вещества. Это клетки кровеносной системы, клетки печени и почек.

Образование лизосом происходит за счет деятельности эндоплазматической сети и комплекса Гольджи. Основная функция их заключается в участии в процессах внутриклеточного расщепления как экзогенных, так и эндогенных биологических макромолекул.

Среди лизосом можно выделить три основных типа: первичные лизосомы, вторичные лизосомы, остаточные тельца.

Первичные лизосомы. В первичных лизосомах содержатся неактивные ферменты. Эти ферменты синтезируются в гранулярной эндоплазматической сети. Затем они поступают в комплекс Гольджи, где упаковываются в мелкие мембранные пузырьки – первичные лизосомы.

Вторичные лизосомы. При соединении первичной лизосомы с фагоцитарными или пиноцитозными вакуолями образуются вторичные лизосомы. При этом содержи­мое первичной лизосомы сливается с содержимым эндоцитозной ва­куоли. В дальнейшем под действием ферментов первичной лизосомы поглощенный материал постепенно расщепляется до мономеров. Мономеры транспортируются через мембрану лизосомы в цитоплазму, где они включаются в метаболизм клетки. Например, при введении в организм мыши чужеродного белка пероксидазы наблюдается накопление его в эндоцитозных вакуолях. С этими вакуолями соединяются первичные лизосомы, об­ладающие кислой фосфатазой. В образовавшейся новой вакуоли обнаружи­вается как пероксидазная, так и фосфатазная активность.

Разновидностью вторичных лизосом являются аутолизосомы (аутофагосомы), которые постоянно встречаются в клет­ках простейших, растений и животных. В отличие от обычных вторичных лизосом в аутолизосомах встречаются фрагменты или даже целые цито­плазматические структуры (митохондрии, пластиды, рибосомы и т. д.). Функциональное значение их заключается в уничтожении дефектных структур клетки. Число аутофагосом возрастает при метаболических стрессах и различных повреждениях клеток.

Остаточные тельца, или телолизосомы. В ряде случаевпереваривание биогенных макромолекул внутри лизосом может идти не до конца. В этом случае в полостях лизосом накапливаются непереваренные продукты. Такие лизосомы называют остаточными тельцами. Судьба остаточных телец может быть различной: одни из них выбрасываются из клетки путем экзоцитоза, другие же остаются в клетках вплоть до их гибели (например, липофусциновые гра­нулы). Так у простейших остаточные тельца выделяются во внешнюю среду. У человека при старении организма в остаточных тельцах клеток мозга, печени, мышечных волокон накапливается «пигмент старения» - липофусцин. Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах наблюдается вторичная структуризация неперевариваемых липидов, которые образуют слоистые структуры.

Функции лизосом

1. Внутриклеточное пищеварение. Это основная функция лизосом. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.

2. Изменение клеточных продуктов. Например, благодаря лизосомам, в клетках щитовидной железы происходит преобразование тироглобулина в тироксин.

3. Переваривание дефектных клеточных органоидов. В некоторых случаях лизосомы также могут переварить отдельные органы. Например, исчезновение хвоста у головастика лягушек происходит под действием ферментов лизосом.

Митохондрии (от гр. mitos — «нить», chondrion — «зернышко, крупинка») — это постоянные мембранные органеллы округлой или палочковидной (нередко ветвящейся) формы. Толщин — 0,5 мкм, длина — 5—7 мкм. Количество митохондрий в большинстве животных клеток — 150—1500; в женских яйцеклетках — до нескольких сотен тысяч, в сперматозоидах — одна спиральная митохонондрия, закрученная вокруг осевой части жгутика.

Основные функции митохондрий:
1)играют роль энергетических станций клеткок. В иих протекают процессы окислительного фосфорилирования (ферментативного окисления различных веществ с последующим накоплением энергии в виде молекул аденозинтрифосфата —АТФ);
2)хранят наследственный материал в виде митохондриальной ДНК. Митохондрии для своей работы нуждаются в белкаx, закодированных в генах ядерной ДНК, так как собственная митохондриальная ДНК может обеспечить митохондрии
лишь несколькими белками.
Побочные функции — участие в синтезе стероидных гормонов, некоторых аминокислот (например, глютаминовой).

Строение митохондрий
Митохондрия имеет две мембраны: наружную (гладкую) и внутреннюю (образующую выросты — листовидные (кристы) и трубчатые (тубулы)). Мембраны различаются по химическому составу, набору ферментов и функциям.
У митохондрий внутренним содержимым является матрике — коллоидное вещество, в котором с помощью электронного микроскопа были обнаружены зерна диаметром 20—30 нм (они накапливают ионы кальция и магния,запасы питательных веществ,например,гликогена).
В матриксе размещается аппарат биосинтеза белка органеллы:
2-6 копий кольцевой ДНК, лишенной гистоновых белков (как
у прокариот), рибосомы, набор т-РНК, ферменты редупликации,
транскрипции, трансляции наследственной информации. Этот аппарат
в целом очень похож на таковой у прокариот (по количеству,
структуре и размерам рибосом, организации собственного наследственного аппарата и др.), что служит подтверждением симбиотической концепции происхождения эукариотической клетки.
В осуществлении энергетической функции митохондрий активно участвуют как матрикс, так и поверхность внутренней мембраны, на которой расположена цепь переноса электронов (цитохромы) и АТФ-синтаза, катализирующая сопряженное с окислением фосфорилирование АДФ, что превращает его в АТФ.
Митохондрии размножаются путем перешнуровки, поэтому при делении клеток они более или менее равномерно распределяются между дочерними клетками. Так, между митохондриями клеток последовательных генераций осуществляется преемственность.
Таким образом, митохондриям свойственна относительная автономность внутри клетки (в отличие от других органоидов). Они возникают при делении материнских митохондрий, обладают собственной ДНК, которая отличается от ядерной системой синтеза белка и аккумулирования энергии.

Пластиды

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Хромопласты – пластиды, окраска которых бывает желтого, оранжевого или красного цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.

Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.

Все виды пластид имеют общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зеленых листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев. В каждой определенной клетке растения может быть только один вид пластид.

Митотический цикл. Митоз

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Мейоз: 1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Вопрос 8


Дата добавления: 2018-02-28; просмотров: 980; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!