Уровни легирования полупроводников
Принято различать полупроводники по концентрации электрически активной примеси или уровня легирования.
Слаболегированные полупроводники. Это такой уровень легирования, при котором между валентными электронами примесных атомов практически нет взаимодействия. При этом примесные атомы создают в запрещённой зоне дискретные энергетические уровни.
Среднелегированные полупроводники. Расстояние между атомами примеси уменьшается и происходит перекрытие орбит валентных электронов соседних примесных атомов. Локальные энергетические уровни расплываются, образуя примесную зону.
Сильнолегированные полупроводники. Наблюдается сильное взаимодействие соседних примесных атомов. Примесная зона сливается с одной из основных зон. Образуется единая разрешённая зона, при этом ширина запрещённой зоны уменьшается.
Носители заряда в примесных полупроводниках
При производстве полупроводниковых приборов помимо чистых полупроводников, в частности чистых германия и кремния, являющихся исходными материалами, используют примесные полупроводники.
Введение примеси связано с необходимостью создания в полупроводнике преимущественно электронной либо дырочной электропроводности и увеличения электрической проводимости. В связи с этим различают соответственно электронные (n-типа) и дырочные (p-типа) полупроводники.
Для получения полупроводника с электропроводностью n-типа в чистый полупроводник вводят примесь, создающую в полупроводнике только свободные электроны. Вводимая примесь является «поставщиком» электронов, в связи с чем ее называют донорной. Для германия и кремния, относящихся к IV группе Периодической системы элементов, донорной примесью служат элементы V группы (сурьма, фосфор, мышьяк), атомы которых имеют пять валентных электронов.
|
|
При внесении такой примеси атомы примеси замещают атомы исходного полупроводника в отдельных узлах кристаллической решетки. Четыре электрона каждого атома донорной примеси участвуют в ковалентной связи с соседними атомами исходного материала, а пятый («избыточный») электрон, не участвующий в ковалентной связи, оказывается значительно слабее связанным со своим атомом. Для того чтобы оторвать его от атома и превратить в свободный носитель заряда, требуется значительно меньшее количество энергии, чем для освобождения электрона из ковалентной связи. В результате приобретения такой энергии (например, энергии фонона при комнатной температуре кристалла) «избыточный» электрон покидает атом и становится свободным, а атом примеси превращается и положительный ион (ионизация атома примеси). В условиях достаточно большой концентрации атомов примеси их ионизация создает некоторую концентрацию в кристалле полупроводника свободных электронов и неподвижных положительных ионов, локализованных в местах расположения атомов примеси. Слой полупроводника остается электрически нейтральным, еслиосвободившиеся электроны не уходят за пределы слоя. При уходе электронов под воздействием каких-либо факторов в другие слои кристалла оставшиеся положительные ионы донорной примеси создают в данном слое нескомпенсированный положительный объемный заряд.
|
|
На энергетической диаграмме полупроводника n-типа вводимая примесь приводит к появлению в запрещенной зоне вблизи зоны проводимости близко расположенных друг от друга локальных валентных уровней энергии, заполненных электронами при температуре абсолютного нуля. Число локальных уровней определяется количеством атомов примеси в кристалле. При комнатной температуре практически все электроны донорных уровней перейдут в зону проводимости и смогут участвовать в создании тока.
Концентрация электронов в зоне проводимости (свободных электронов) при этом определяется преимущественно концентрацией введенной примеси, а не собственными электронами валентной зоны, преодолевающими широкую запрещенную зону. В соответствии с этим концентрация электронов nп в полупроводнике n-типа существенно выше концентрации дырок рп, образующейся в результате перехода электронов из валентной зоны в зону проводимости. Можно считать, что в полупроводнике n-типа ток создается в основном электронами. Другими словами, электроны в этом случае являются основными носителями заряда, а дырки - неосновными носителями заряда.
|
|
В полупроводниках р-типа введение примеси направлено на повышение концентрации дырок. Задача решается использованием в качестве примеси элементов III группы Периодической системы (индий, галлий, алюминий, бор), атомы которых имеют по три валентных электрона. При наличии такой примеси каждый ее атом образует только три заполненные ковалентные связи с соседними атомами исходного полупроводника в кристаллической решетке связь остается незаполненной. Недостающий валентный электрон для заполнения связи принимается от одного из соседних атомов кристаллической решетки, так как требуемая для такого перехода энергия невелика. Переход электрона приводит к образованию дырки в ковалентной связи соседнего атома, откуда ушел электрон, и превращению атома примеси в неподвижный отрицательный ион. В результате за счет примеси достигается повышение концентрации дырок в полупроводнике. Атомы примеси, принимающие валентные электроны соседних атомов, называют акцепторными, а саму примесь - акцепторной.
|
|
В условиях достаточно большой концентрации атомов акцепторной примеси в кристалле полупроводника создается некоторая концентрация дырок и отрицательных ионов. Пока число дырок в данном слое полупроводника остается равным числу отрицательных ионов в нем, в слое сохраняется зарядная нейтральность. Если вошедшие из других слоев электроны заполнят некоторое число существующих дефектов валентной связи (рекомбинация электронов с дырками), в данном слое появится нескомпенсированный отрицательный объемный заряд, создаваемый ионами акцепторной примеси.
Рассмотрим процесс образования дырок в полупроводнике р-типа, исходя из его энергетической диаграммы. При наличии акцепторной примеси в запрещенной зоне энергетической диаграммы исходного полупроводника вблизи валентной зоны появляются локальные уровни энергии, свободные от электронов при температуре абсолютного нуля. Число локальных уровней определяется концентрацией атомов примеси в кристалле. При комнатной температуре все акцепторные уровни будут заняты электронами, перешедшими из валентной зоны. В валентной зоне появится большая концентрация дырок.
Концентрация дырок в валентной зоне при этом определяется имущественно концентрацией внесенной акцепторной примеси, а не дырками, возникающими при термогенерации носителей заряда за счет преодоления валентными электронами широкой запрещенной зоны. В соответствии с этим концентрация дырок рр в полупроводнике р-типа существенно больше концентрации свободных электронов nр. По этой причине ток в дырочном полупроводнике переносится в основном дырками. Дырки в этом случае являются основными носителями заряда, а электроны неосновными носителями заряда.
Таким образом, в примесных полупроводниках концентрации основных носителей заряда (nп-электронного полупроводника и p- дырочного полупроводника) создаются за счет внесения примеси, а концентрации неосновных носителей заряда (рп, nр - соответственно электронного и дырочного полупроводников) - за счет термогенерации носителей заряда, связанной с переходом электронов из валентной зоны в зону проводимости. Необходимая примесь вносится в количестве, при котором концентрация основных носителей заряда существенно (на два-три порядка) превышает концентрацию неосновных носителей заряда. В зависимости от концентрации введенной примеси удельная проводимость примесного полупроводника возрастает по сравнению с чистым полупроводником в десятки и сотни тысяч раз.
Назначение легирующих примесей:
1. Изменение положения уровня Ферми, создание разрешённых уровней в запрещённой зоне с целью изменения концентрации и типа носителей заряда;
2. Создание центров излучательнойи безызлучательной рекомбинации;
3. Изменение подвижности, длины свободного пробега носителей свободного заряда;
4. Изменение ширины запрещённой зоны;
5. Изменение предельной растворимости в другой примеси;
6. Изменение межатомных расстояний с целью уменьшения напряжений в многослойных структурах;
7. Изменение КТЛР (коэффициент термического линейного расширения) с той же целью;
8. Создание внутренних геттеров (центры захвата) в подложках для собственных и примесных дефектов;
9. Изменение теплопроводности;
10. Изменение механических свойств;
11. Улучшение адгезии между слоями разнородных веществ.
Дата добавления: 2018-02-28; просмотров: 1406; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!