Принцип неопределенности Гейзенберга



Корпускулярно – волновой дуализм накладывает ограничения на применение аппарата классической механики к описанию явлений микромира в виде математических ограничений, известных как принцип неопределенности. Выделим из них два. Первое гласит: одновременное и точное указание координат и импульса частицы невозможно

а) б) Рис. 9.6. Потенциальная яма а) и барьер б)

где неопределенности в значениях соответствующих координат, а неопределенности в соответствующих значениях проекций импульсов. Указанные неопределенности имеют объективную причину. В силу природы микромира локализация частицы в процессе ее движения затруднена или практически невозможна.

Второе связано с энергией частицы и временем, в течение которого она фиксируется

Частица – электрон с массой (рисунок 9.6 а), находящаяся в потенциальной яме, обладает нулевым значением потенциальной энергии. На границе этой ямы и вне нее она обладает потенциальной энергией, равной

На рисунке 9.6 б представлен потенциальный барьер. В области потенциальная энергия частицы имеет энергию Пусть некоторый электрон движется со скоростью и падает в область пространства, где поле препятствует его движению. Такая область называется потенциальным барьером. Так как электрон находится в области I достаточно долго, то неопределенность в значении энергии мала, и мы можем ее рассчитать с необходимой точностью. Взаимодействие с барьером кратковременно, а неопределенность в значении энергии столь велика, что может сравняться с высотой барьера. В этом случае электрон, не имея в области I необходимой энергии для преодоления потенциального барьера, тем не менее, окажется в области II. Этот факт носит название туннельного эффекта или подбарьерного просачивания. Туннельный эффект может наблюдаться и через стенки потенциальной ямы.

 


Дата добавления: 2015-12-16; просмотров: 97; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!