Вычислительный комплекс ПС3000



Развитие перестраиваемых структур привело к разработке комплексов ПС2000 и ПС3000. Так комплекс ПС2000 ориентирован на высокопроизводительную обработку по регулярным алгоритмам, на которых достигается производительность до 200 млн. операций в секунду. Высокая скорость достигается за счет проблемной ориентации на задачи выполняемые параллельно. Программа одна, управление, соответственно, одно, потоков данных множество. Примерами задач являются одномерное, двумерно преобразование Фурье, цифровая фильтрация, операции над векторами и матрицами, решение систем дифференциальных уравнений, корреляционная обработка и т.д. Указанные задачи характерны для АСУТП, сейсморазведки, в моделировании различных систем в реальном времени, для обработки изображений в реальном времени. Комплексы работают с реальными входными сигналами, обеспечивая обработку информации в реальном времени. ПС3000 продолжает направление предыдущих структур и первоначально ориентирован на региональные геофизические вычислительные комплексы. В рамках направления выпускают модели К-143-12, К143-13, К-143-14 —в основе которых комплекс ПС3000. В первую очередь, ПС3000 предназначен для сейсморазведки, используется в АСУТП верхнего уровня, в автоматизированных системах научных исследований, при прямом цифровом управлении.

УОП — устройство оперативной памяти. Два модуля оперативной памяти могут расширятся до 4 так, что их общая емкость составит 8Мбайт. Память по раздельным каналам связана со скалярным процессором ПрС, поэтому возможно резервировать каналы связи, части памяти или даже процессоры. В памяти осуществляется контроль по Хэммингу с обнаружением двойной ошибки. Максимальная скорость обмена между памятью и скалярным процессором до 96Мбайт/сек. Число скалярных процессоров 2 или 4. Число векторных процессоров(ПрВ) один или два. Для повышения надежности процессоры могут функционировать параллельно, но число одновременно решаемых задач определяется числом скалярных процессоров. Т.е. помимо параллельных данных, параллельность команд. Система команд включает все не привилигированные команды вычислительных комплексов типа СМ2. Управление осуществляется сопроцессором обработки массивов (СОМ) и субкомплексом управления (СУВК). СВТ — комплекс визуализации терминальный, предназначен для отображения как состояния в системе, так и результатов. В качестве субкомплексов управления используется микроЭВМ СМ50/60 (1810ВМ86). Высокая производительность всей системы обеспечивается быстродействием скалярных процессоров, при этом совмещаются различные фазы выполнения. Комплекс функционирует по конвейеру. Управление в процессорах микропрограммное. Быстродействие — на регулярных алгоритмах. В полном составе комплекса до 4 скалярных процессора (до 2 матричных). Каждый скалярный процессор работает под управлением памяти. Система ПС3000 включает все непривелегированные команды комплекса СМ2, пожтому программные наработки полностью используется от этих машин. Общая емкость виртуальной памяти до 256Мбайт. Формат представления: фиксированная запятая 16/32, плавающая запятая 32/64. Одна векторная операция выполняется над массивом в 256 элементов. Главная память включает 2, 4 устройства по 2 Мбайта. По отдельным выделенным каналам память связана со скалярными процессорами. Это позволяет блокировать отдельные каналы в случае неисправности какого-либо модуля. Устройство ввода-вывода управляется с помощью микроЭВМ. Системные субкомплексы подключаются к мультиплексорам ввода-вывода которые входят в состав скалярных процессоров. Каждый субкомплекс подключается по двум каналам, что позволяет в случае необходимости переключать направление или резервировать их. В каждом мультиплексоре 8 каналов. Программы поддерживают макроассемблер, ПАСКАЛЬ, ФОРТРАН.

АСВТ-ПС — попытка построения высокопроизводительных структур на имеющейся в то время элементной базе (555). Память, коммутаторы — ЭСЛ (100,500). В рамках ПС не разрабатывались периферийные устройства, отсюда периферия заимствована и СМ ЭВМ. В рамках серии ПС сделана попытка получения высокой производительности за счет распараллеливания регулярных алгоритмов, простые задачи решать на этих структурах неэффективно. Основной недостаток структур — большое энергопотребление. Элементная база не самая современная.

19.4. Многопроцессорный вычислительный комплекс «Эльбрус»

Класс больших машин характеризовался двумя видами: семейство ЕС и машинами БЭСМ. Как первые, так и вторые с ростом интеграции постепенно устарели, однако необходимость в замене машин серии БЭСМ привела к разработке нового устройства программно совместимого с серией БЭСМ — «Эльбрус». Многопроцессорные вычислительные комплексы семейства «Эльбрус» отличаются числом процессоров, их быстродействием, элементной базой и производительностью. Так «Эльбрус-1»: производительность до 12 млн. коротких операций, «Эльбрус-2» до 200 млн. коротких операций. Система допускает объединение как универсальных, так и специализированных процессоров вместе с модулями памяти и устройствами ввода-вывода. Главной отличительной особенностью систем «Эльбрус» является использование вместо шинной связи специальных коммутаторов — быстродействующих коммутаторов межмодульной связи. Коммутатор имеет матричную двух- или трехмерную организацию. В узлах матрицы быстродействующие ключи. Причем соединение между модулями в системе сохраняется на все время передачи сигнала. Поскольку матрица имеет множество строк/столбцов, то возможна одновременная связь между различными функциональными модулями вычислителя. Сам коммутатор не порождает конфликты в системе (в отличие от шины когда она занята). Конфликт с такой организацией может возникнуть если будет запрос на обслуживание двух устройств одновременно, однако программно его можно исключить. Главное требование к матричному коммутатору — задержка в нем должна быть минимальная, отсюда элементная база ЭСЛ. Коммутатор реализует пространственное разделение сигналов в отличие от временного, как в шине.

 
 

Коммутатор межмодульных связей (КМС) может устанавливать линии связи с каждым из 9 центральных процессоров. Память разбита на 2 страницы каждая по 16 модулей. Специализированный процессор имеет систему команд БЭСМ6, поэтому программное обеспечение с нее может использоваться в комплексе. Коммутатор связывает также основные блоки с 4 процессорами ввода-вывода. Процессор ввода-вывода — канал, имеющий собственную память, устройство управления и оптимизатор — блок в составе устройства управления, позволяющий выбирать наиболее кратчайший путь до внешнего устройства. К каждому процессору ввода-вывода может быть подключено до 4 процессоров передачи данных. Это блоки преобразования сигналов, как правило, в последовательные коды и передачи их на расстояние. Общее число линий связи в полной комплектации системы — до 1000. Стандартное внешнее устройство серии ЕС подключается к процессору ввода-вывода через ряд каналов. Быстрые периферийные устройства (НГМД) связаны с процессорами ввода-вывода через коммутирующие блоки — обменники. В случае занятости одного из внешних устройств запись данных будет выполняться в другое. При полной комплектации обменники существуют как для барабанов, так и для дисков. Помимо этого особенность системы «Эльбрус» — приближение уровня машинного языка в системе команд к уровню алгоритмического языка. В результате скорость трансляции и производительность системы возрастает. Следующая особенность — в системе применяются аппаратные стеки для безадресных команд. Динамическое перераспределение ресурсов и обработка прерываний через стек. Безадресные команды — это неявная адресация, когда транслятор при расшифровке кода команды обращается непосредственно к стеку где лежит код команды, фазы адресации нет. Каждое слово памяти снабжено специальным ярлыком (признаком) называемым тегом. В нем в дополнительных разрядах указывается тип данных, операнды команд, формат (плавающая, фиксированная запятая, целые числа), имя переменной, режим защиты. Массивы данных описываются аппаратом дескрипторов. Он задает адресные границы массива, тип содержимого, данные команды и некоторые другие характеристики.

Многопроцессорная обработка — это одновременная работа нескольких процессоров над своими данными, распределение управляющих программ через аппаратные стеки. В оперативной памяти выделяется область стеков, причем возможно перераспределение стеков между процессорами.

Вопросы для самопроверки

1. Определите основные области применения вычислительных комплексов типа ПС.

2. Кокай способ объединения процессоров использован в комплексах типа ПС?

3. Поясните необходимость параллельного включения векторного и скалярного процессоров.

4. Почему такой вид комплексов назван «агрегатированным»?

5. Какие способы обработки данных использованы в вычислительных комплексах типа АСВТ ПС?


Дата добавления: 2015-12-20; просмотров: 33; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!