Простейшие схемы подключения и расчёт необходимых параметров



РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

По электротехнике

На тему:

Автономный источник дежурного освещения с таймером

 

 

                                                                                       

 

                                                                                        Работу выполнил:

                                                                                        студент гр. №4213

                                                                                        Иванов Константин Игоревич

                                                                                        Проверил:

                                                                                        доцент Насырова Р.Г.

 

 

Казань 2012

Оглавление

Введение - Особенности применения автономных источников дежурного освещения

Глава 1 – Основные элементы устройства

Светодиод

Общие сведения

Простейшие схемы подключения и расчёт необходимых параметров

Одновибратор на D-триггере

Полевой транзистор

Глава 2 – Автономный источник дежурного освещения с таймером

Схемные варианты и принцип работы

Расчёт времени задержки одновибратора

Расчёт электронного ключа на полевом транзисторе

Глава 3 – Характеристики выбираемых элементов

Пассивные элементы

Аналоговые элементы

Светодиод, батарея и выключатель

Логический элемент

Элементная база

Список литературы

Введение - Особенности применения автономных источников дежурного освещения

 

В век технического прогресса источники света могут работать не только от сети, но и на батарейках. Преимущество такого источника заключается в том, что его не нужно подключать к сети, и он не будет зависеть от каких либо сбоев в электроэнергии, например при пожаре или замыкании, а также его можно спокойно установить где угодно и как угодно, опять же в независимости от того, где проложена сеть. Минусы автономных источников в том, что емкость их аккумуляторов невысока, да и площадь освещения крайне небольшая. Однако при дежурном освещении и не нужна большая площадь освещения. К примеру, в коридорах больниц или в палатах ночью не требуется много света, а достаточно лишь небольшого источника, чтобы можно было ориентироваться в пространстве.

 

Глава 1 – Основные элементы устройства

Светодиод

Общие сведения

На сегодняшний день светодиоды считаются наиболее перспективными источниками света.

До недавнего времени светодиоды использовали в основном в прикладных целях: для подсветки клавиш теле- и радиоаппаратуры, в качестве элемента светосигнальной техники (светофоры, дорожные знаки, указатели и вывески), а также, например, в автомобилестроении (светодиодные фары, стоп-сигналы).

Сегодня подобные источники света все чаще применяют как полноценные осветительно-декоративные системы при создании оформлении фасадов коттеджей, интерьерного, ландшафтного и архитектурного светодизайна, декоративной подсветки элементов мебели и стеклянных предметов – вот неполный список сфер применения светодиодных источников света.

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)

2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности

3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие

4. Миниатюрность

5. Долгий срок службы (долговечность)

6. Высокий КПД,

7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление

8. Большое количество различных цветов свечения, направленность излучения

9. Регулируемая интенсивность

 

Недостатки:

1. относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз

2. малый световой поток от одного элемента

3. деградация параметров светодиодов со временем

4. повышенные требования к питающему источнику

 

У светодиодов есть несколько основных параметров.

1. Тип корпуса

2. Типовой (рабочий) ток

3. Падение (рабочее) напряжения

4. Цвет свечения (длина волны, нм)

5. Угол рассеивания

В основном под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод - полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

 

Простейшие схемы подключения и расчёт необходимых параметров

 Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Пусть имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Расчитаем сопротивление токоограничивающего резистора

 

R = Uгасящее / Iсветодиода

Uгасящее = Uпитания – Uсветодиода

Uпитания = 5 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть надо взять резистор сопротивлением 100 Ом

Несколько светодиодов подключаем последовательно или параллельно, расчитывая необходимые сопротивления.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

 

R = Uгасящее / Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания = 15 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания = 7 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одигаковые параметры, то сопротивления в ветвях одинаковые.

 

Одновибратор на D-триггере

В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности. Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этом подразумевается, что формируемый импульс превышает длительность запускающего.

Как правило, применяют один из двух методов формирования импульса: аналоговый или цифровой. Наиболее простым является аналоговый — используется процесс перезаряда конденсатора.

Рис. 1 Формирователь широкого импульса с использованием триггера Шмидта

 

Пример такой схемы показан на рис. 1. Для правильной работы данного одновибратора необходимо, чтобы длительность входного запускающего импульса была достаточно большой, чтобы конденсатор успел полностью разрядиться. После окончания запускающего импульса конденсатор заряжается через резистор до величины напряжения питания. При этом, как только напряжение достигнет Uпор — элемент D2.1 переключится. В этом случае длительность выходного импульса (tи) зависит от номиналов установленных емкости и резистора во времязадающей цепи. Упрощенная формула позволяет ориентировочно рассчитать длительность импульса:

tu=R*C*Ln(E/E-Uпор) , где Е — напряжение питания схемы; Uпор - уровень используемого порога.

С учетом разброса значений напряжения порога переключения (Uпор) длительность импульса может принимать значения от tмин=0,4RC до tмax=1,11RC. Обычно в одновибраторах используются ЛЭ из одного корпуса (кристалла). В этом случае разброс Unop оказывается незначительным и можно принять tи=0,69RC. Это соотношение используется для определения длительности импульса в большинстве схем.

Применяемые в схемах диоды ускоряют процесс перезаряда емкости, что уменьшает возможности возникновения импульсных помех на выходе ЛЭ.

Чтобы выходное сопротивление ЛЭ не сказывалось на точности расчета, а также не перегружался выход, резистор R1 должен быть номиналом не менее 10... 20 кОм. Чтобы пренебречь при расчетах емкостью монтажа, минимальная емкость С1 может быть 200... 600 пФ. Для получения высокой температурной стабильности временного интервала номинал R1 должен быть < 200 кОм, а конденсатор не более 1, 5 мкФ. Использование электролитических конденсаторов увеличивает нестабильность временного интервала.

Длительность подаваемых на вход S запускающих импульсов должна быть меньше формируемого (режим, когда на входах S и R одновременно присутствует лог. "1", является запрещенным). На входе С длительность запускающего импульса может быть любой. Диод VD1 ускоряет разряд конденсатора через выход триггера и позволяет увеличить частоту запускающих импульсов (его применение уменьшает время восстановления схемы). Длительность формируемых им пульсов составляет приблизительно tи=0,69R1*C1. Минимальное значение сопротивления R1 ограничено максимально допустимым выходным током триггера, его можно менять в пределах 20 кОм...10 МОм, при этом длительность импульса будет меняться в 500 раз. Одновременное изменение значений R1 и С1 позволяет регулировать длительности импульсов в пределах четырех порядков.

 

Полевой транзистор

Полевой транзистор – это электропреобразовательный прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком, и который предназначен для усиления мощности электромагнитных колебаний.

К классу полевых относят транзисторы, принцип действия которых основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Вследствие этого транзисторы называют полевыми.

По способу создания канала различают полевые транзисторы с затвором в виде управляющего р-n- перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

В зависимости от проводимости канала полевые транзисторы делятся на: полевые транзисторы с каналом р- типа и n- типа. Канал р- типа обладает дырочной проводимостью, а n- типа – электронной.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ) (рис. 2).

Рисунок 2 – Схемы включения полевого транзистора: а) ОИ; б) ОЗ; в) ОС

 

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком дает очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не дает усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение.

 

 

Глава 2 – Автономный источник дежурного освещения с таймером


Дата добавления: 2022-12-03; просмотров: 28; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!