Порядок решения прямой задачи динамики невольной материальной точки



Прямая задача динамики точки

Первая (прямая) задача динамики содержит условие: По заданному движению, совершаемому точкой данной массы, требуется найти неизвестную действующую силу.

Основные законы динамики

В динамике изучается движение материальных систем в связи с действующими на них силами. Самым простым объектом механики является материальная точка.

Материальная точка - тело, размерами которого при решении данной задачи можно пренебречь.


Если на положение материальной точки и на ее движение не наложены никакие ограничения, точка называется свободной, в противном случае имеем дело с движением несвободной точки.

Движение механической системы определяется движением всех ее материальных точек. Поэтому изучение динамики начинается с изучения движения одной материальной точки.

В основе динамики лежат три закона И. Ньютона, которые впервые в наиболее полном и законченном виде были сформулированы в книге "Математические начала натуральной философии" (1686 г.).

1. Первый закон (закон инерции): изолированная от внешних действий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит этого состояния.

 

2. Второй закон (основной закон динамики): cила, которая действует на материальную точку, равна произведению массы точки на ее ускорение, а направление силы совпадает с направлением ускорения:

Если на точку действует несколько сил, то их можно заменить равнодействующей:

Если точка движется по какой-то поверхности, то на нее, кроме активных сил действует и реакция связи .

Таким образом в общем случае в уравнении (1.1):

3. Третий закон (закон равенства действия и противодействия): Силы взаимодействия двух материальных точек равны между собой по модулю и направлены вдоль одной прямой, которая соединяет эти точки, в противоположные стороны.

Уравнения движения материальной точки в декартовых и естественных системах отсчета

Вместо уравнения движения (1.1) в векторной форме можно получить уравнение в скалярной форме, если спроектировать (1.1) на оси декартовой или естественной систем координат.

Уравнение движения в декартовых координатах:

Здесь - проекции силы на соответствующие декартовые оси координат;

- проекции ускорения на те же оси.

Две основные задачи динамики материальной точки

Первая задача (прямая): зная массу точки и законы ее движения, например, в декартовых координатах:

определить равнодействующую приложенных к точке сил.

Сначала нужно определить проекции ускорения точки на оси координат:

Используя уравнение движения точки в декартовых координатах (1.3), определяем значения проекций равнодействующей приложенных к точке сил, а также ее модуль:

Направление вектора силы относительно осей координат определяется с помощью направляющих косинусов:

Вторая задача (обратная): зная силы, которые действуют на материальную точку, ее массу, а также первоначальные условия (положение точки и ее скорость в некоторые моменты времени, не обязательно в начальный), получить уравнение движения точки.

Порядок решения прямой задачи динамики невольной материальной точки

1. Изобразить на рисунке материальную точку в промежуточном положении.
2. Показать активные силы и реакции связей, которые на нее действуют.
3. Выбрать систему отсчета.
4. Записать векторное уравнение движения точки в форме второго закона динамики (1.1).
5. Спроектировать векторное уравнение движения точки на выделенные оси координат.
6. Из полученных уравнений определить необходимые величины.


Дата добавления: 2022-06-11; просмотров: 33; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!