Классификация электроприводов. Области применения.
Сегодня в приборных системах используются электроприводы, мощность которых составляет единицы микроватт; мощность электропривода компрессора на перекачивающей газ станции - десятки мегаватт, т.е. диапазон современных электроприводов по мощности превышает 1012. Такого же порядка и диапазон по частоте вращения: в установке, где вытягиваются кристаллы полупроводников, вал двигателя должен делать 1 оборот в несколько десятков часов при очень жестких требованиях к равномерности движения; частота вращения шлифовального круга в современном хорошем станке может достигать 150000 об/мин.
Но особенно широк - безгранично широк - диапазон применений современного электропривода: от искусственного сердца до шагающего экскаватора, от вентилятора до антенны радиотелескопа, от стиральной машины до гибкой производственной системы. Именно эта особенность - теснейшее взаимодействие с технологической сферой - оказывала и оказывает на электропривод мощное стимулирующее влияние. Непрерывно растущие требования со стороны технологических установок определяют развитие электропривода, совершенствование его элементарной базы, его методологии. В свою очередь, развивающийся электропривод положительно влияет на технологическую сферу, обеспечивает новые, недоступные ранее возможности.
Основы механики электропривода. Уравнение движения. Динамический момент. Режимы работы электропривода
|
|
Рассмотрим самую простейшую механическую систему, состоящую из ротора двигателя и непосредственно связанной с ним нагрузки - рабочего органа машины (рис. 2.1.). Несмотря на простоту, система вполне реальна: именно так реализована механическая часть ряда насосов, вентиляторов, многих других машин. Кроме того, к такой модели может быть приведена механическая часть большинства электроприводов, рассматриваемых в курсе.
Рис. 2.1. Модель механического преобразователя
Будем считать, что к системе на рис. 2.1 приложены два момента - электромагнитный момент М, развиваемый двигателем, и момент Мс, создаваемый нагрузкой, а также потерями механической части (трение); каждый момент имеет свою величину и направление. Движение системы определяется вторым законом Ньютона:
(2.1)
где - угловая скорость,
J- суммарный момент инерции.
Правая часть уравнения (2.1) - динамический момент . Он возникает, если алгебраическая сумма моментов М и Мс отлична от нуля; величина и знак динамического момента определяют ускорение.
Режимы, при которых , т.е. моменты М и Мс равны по величине и противоположно направлены, называют установившимися или статическими, им соответствует , в том числе Режимы, когда , называют переходными или динамическими (ускорение, замедление).
|
|
В уравнении (2.1) момент Мс практически полностью определяется свойствами нагрузки, а момент М, который можно принять за независимую переменную, формируется двигателем. Скорость - зависимая переменная; определяется в динамических режимах решением (2.1) для любых конкретных условий, а в статических режимах находится из условия:
Дата добавления: 2018-02-15; просмотров: 756; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!