Классификация систем по сложности.



Существует ряд подходов к разделению систем по сложности, и, к сожалению, нет единого определения этому понятию, нет и четкой границы, отделяющей простые системы от сложных. Разными авторами предлагались различные классификации сложных систем.

 Например, признаком простой системы считают сравнительно небольшой объем информации, требуемый для ее успешного управления. Системы, в которых не хватает информации для эффективного управления, считают сложными.

Г.Н. Поваров оценивает сложность систем в зависимости от числа элементов, входящих в систему, (рис. 5):

Рисунок 5. Сложность систем в зависимости от числа элементов по Г.Н. Поварову.

В частности, Ю.И. Черняк сложной называет систему, которая строится для решения многоцелевой, многоаспектной задачи и отражает объект с разных сторон в нескольких моделях. Каждая из моделей имеет свой язык, а для согласования этих моделей нужен особый метаязык. При этом подчеркивалось наличие у такой системы сложной, составной цели или даже разных целей и притом одновременно многих структур (например, технологической, административной, коммуникационной, функциональной и т. д.).

B.C. Флейшман за основу классификации принимает сложность поведения системы. Одна из интересных классификаций по уровням сложности предложена К. Боулдингом (таблица 2). В этой классификации каждый последующий класс включает в себя предыдущий.

Условно можно выделить два вида сложности: структурную и функциональную.

Структурная сложность.

Ст. Вир предлагает делить системы на простые, сложные и очень сложные.

Простые - это наименее сложные системы.

Сложные - это системы, отличающиеся разветвленной структурой и большим разнообразием, внутренних связей.

Таблица 2 - Классификация систем по уровню сложности К. Боулдинга.

Типы систем Уровень сложности Примеры

Неживые системы

Статические структуры (основы) Кристаллы
Простые динамические структуры с заданным законом поведения Часовой механизм
Кибернетические системы с управляемыми циклами обратной связи Термостат

Живые системы

Открытые системы с самосохраняемой структурой (первая ступень на которой возможно разделение на живое и неживое) Клетки
Живые организмы с низкой способностью воспринимать информацию Растения
Живые организмы с более развитой способностью воспринимать информацию, но не обладающие самосознанием Животные
Системы, характеризующиеся самосознанием, мышлением и нетривиальным поведением Люди
Социальные системы Социальные организации
Трансцендентные системы или системы, лежащие в настоящий момент вне нашего познания -

 

Очень сложная система - это сложная система, которую подробно описать нельзя.

Несомненно, что эти деления довольно условны и между ними трудно провести границу. (Здесь сразу вспоминается вопрос: с какого количества камней начинается куча?)

Позднее Ст. Вир предложил относить к простым системам те, которые имеют до 103 состояний, к сложным - от 103 до 106 состояний и к очень сложным - системы, имеющие свыше миллиона состояний.

Одним из способов описания сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними. Например, количественную оценку сложности системы можно произвести, сопоставляя число элементов системы  и число связей  по следующей формуле:

,

где  - максимально возможное число связей.

Можно применить энтропийный подход к оценке сложности системы. Считается, что структурная сложность системы должна быть пропорциональна объему информации, необхо-димой для ее описания (снятия неопределенности). В этом случае общее количество информации о системе , в которой априорная вероятность появления -го свойства равна

 определяется как функциональная сложность. Говоря о сложности систем, Ст. Вир отразил только одну сторону сложности - сложность строения - структурную сложность. Однако следует сказать и о другой сложности систем - функциональной (или вычислительной). Для количественной оценки функциональной сложности можно использовать алгоритмический подход, например количество арифметико-логических операций, требуемых для реализации функции системы преобразования входных значений в выходные, или объем ресурсов (время счета или используемая память), используемых в системе при решении некоторого класса задач.

Считается, что не существует систем обработки данных, которые могли бы обработать более чем  бит информации в секунду на грамм своей массы. Тогда гипотетическая компьютерная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 1098 бит информации (предел Бреммермана). При этих расчетах в качестве информационной ячейки использовался каждый квантовый уровень в атомах, образующих вещество Земли. Задачи, требующие обработки более чем 1093 бит называются трансвычислительными. В практическом плане это означает, что, например, полный анализ системы из 100 переменных, каждая из которых может принимать 10 разных значений, является трансвычислительной задачей.

Пример. Если система имеет два входа, которые могут находиться в двух возможных состояниях, то возможных вариантов состояния - четыре. При 10 входах вариантов уже 1024, а при 20-ти (что соответствует маленькой реальной сделке) — вариантов уже 220. Когда имеется реальный оперативный план небольшой корпорации, в котором хотя бы тысяча независимых событий (входов), то вариантов получается 21000! Значительно больше предела Бреммермана.

Кроме того, выделяют такой тип сложности, как динамическая сложность. Она возникает тогда, когда меняются связи между элементами. Например, в коллективе сотрудников фирмы может время от времени меняться настроение, поэтому существует множество вариантов связей, которые могут устанавливаться между ними. Попытку дать исчерпывающее описание таким системам можно сравнить с поиском выхода из лабиринта, который полностью изменяет свою конфигурацию, как только вы меняете направление движения. Примером могут служить шахматы.

Малые и большие, сложные и простые. Рассматривают четыре варианта сложности систем

1) малые простые;

 2) малые сложные;

3) большие простые;

4) большие сложные.

При этом выделение системы того или иною класса в одном и том же объекте зависит от точки зрения на объект, т. е. от наблюдателя.

Примеры:

1. Давно известно что обыватели всегда готовы давать советы в области воспитания, лечения, управления страной - для них это всегда малые простые системы. Тогда как для воспитателей, врачей и государственных деятелей - это большие сложные системы.

2. Исправные бытовые приборы для пользователя малые простые системы, но неисправные - малые сложные. А для мастера те же неисправные приборы - малые простые системы.

3. Шифрозамок для хозяина сейфа малая простая система, а для похитителя - большая простая.

Таким образом, один и тот же объект может быть представлен системами разной сложности. И это зависит не только oт наблюдателя, но и от цели исследования. В связи с этим, В. А. Карташев пишет: «Первичное рассмотрение даже самых сложных образований на уровне установления их основных, главных отношений приводит к понятию простой системы»

Пример. При стратифицированном описании предприятия на самой верхней страте оно может быть описано в виде малой простой системы в виде «черного ящика» с основными ресурсами на входе и продукцией на выходе.

Детерминированность.

Рассмотрим еще одну классификацию систем, предложенную Ст. Биром.

Если входы объекта однозначно определяют его выходы, то есть его поведение можно однозначно предсказать (с вероятностью 1), то объект является детерминированным в противном случае - недетерминированным (стохастическим).

 Математически детерминированность можно описать как строгую функциональную связь , а стохастичность возникает в результате добавления случайной величины :

Детерминированность характерна для менее сложных систем;  стохастические системы сложнее детерминированных, поскольку их более сложно описывать и исследовать

Примеры:

1. Швейную машинку можно отнести к детерминированной системе: повернув на заданный угол рукоятку машинки можно с уверенностью сказать, что иголка переместится вверх-вниз на известное расстояние (случай неисправной машинки не рассматриваем)

 2. Примером недетерминированной системы является собака, когда ей протягивают кость, нельзя однозначно прогнозировать поведение собаки.

Интересен вопрос о природе стохастичности. С одной стороны, стохастичность - следствие случайности, а с другой - приблизительности измерений.

Случайность - это цепь невыявленных закономерностей, скрытых за порогом нашего понимания.

 

В первом случae мы не можем учесть все факторы (входы), действующие на объект, а также не знаем природы его нестационарности. Во втором - проблема непредсказуемости выхода связана с невозможностью точно измерить значения входов и ограниченностью точности сложных вычислений.

Примеры. Ст. Вир предлагает следующие примеры систем, (табл. 3):

 

 

Таблица 3 – Примеры детерминированных и недерменированных систем по видам систем Ст. Вира.

Вид систем Детерминированные Недетерменированные
Простые Оконная задвижка Бильярдный шар (как абстрактная система) Подбрасывание монеты Медуза (в целом поскольку в биохимическом смысле – очень сложный организм)
Сложные ЭВМ Тела во вселенной Автоматическая линия Хранение запасов Условные рефлексы Прибыль предприятия
Очень сложные Очень сложных детерминированных систем не существует Экономика государства Человеческий мозг Предприятие, фирма

 


Дата добавления: 2018-02-15; просмотров: 6122; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!