Сотовая связь: понятие, особенности. Влияние пульсирующего микроволнового излучения на человека. Снижение неблагоприятных последствий его воздействия.



Одним из основных источников ЭМ излуче­ния для современного человека является мобильная телефония. В РБ в качестве несущей частоты используются диапазоны 450 и 900 Мгц. Первая из частот используется в стандартах NMT и CDMA-2000, вторая - в стандарте GSM (Велком, МТС). Остановимся на технических и медико-биол-их ас­пектах стан­дарта GSM как одной из технологий второго поколе­ния сотовой связи. Основой любой сотовой связи является деле­ние террито­рии охвата на определенные ячейки или соты. ЭМ волны длиной 33-67 см могут легко огибать пре­пятствия (зда­ния), отражаться и преломляться. Идеальная сото­вая сеть будет состоять из шестиугольных ячеек, имеющих ба­зовую станцию в центре. В крупных городах базовые станции часто строятся на расстояние нескольких сот метров друг от друга. Такие струк­туры носят название макроячеек. Меньшие по мощности, базо­вые станции могут устанавливаться в местах большого скопления пользователей, например на вокзалах, метро (микроячейки). И совсем маломощные станции могут быть устроены в больших зданиях для обслуживания офисов (пикоя­чейки). Принципы со­товой связи подразумевают передачу сиг­нала при перемещении пользователей от одной ячейки к дру­гой, обеспечивая его мо­бильность. Для увеличения числа поль­зова­телей в системе GSM используется технология множествен­ного время разделенного доступа TDMA который позволяет один ка­нал ис­пользовать не­скольким абонентам. 8 таких сигналов объ­единены в пачку и, следовательно, 8 абонентов одновременно могут ис­пользовать один канал связи. Далее происхо­дит дальнейшее сжатие инфы в импульс из 26 пачек. Этим дости­га­ется увеличе­ние числа абонентов. При работе мобиль­ного те­ле­фона стан­дарта GSM и выходной мощностью 2 Вт вблизи 100 В/м. По действующим в Бел нормативным до­кументам плотность по­тока от аппарата моб. связи не должна пре­вышать 100 мкВт/см2.

Выделяют два механизма действия микроволнового излуче­ния сотовых телефонов на ткани человеческого организма: тер­мическое и нетермическое (информационное). Термический эф­фект вызывается повышением температуры и обусловлен более интенсивным движением или колебанием частиц, молекул и ато­мов вследствие поглощения энергии электромагнитного поля. В тканях организма этот процесс уравновешивается функциониро­ванием системы кровообращения, которая уносит выделяющееся тепло. Между тем в теле человека, особенно в области воздей­ствия излучения мобильных телефонов, имеются ткани, которые плохо кровоснабжаются в силу того обстоятельства, что не имеют сосудов. К ним относится ткать хрусталика глаза, тепло­вое воздействие на которую может привести к развитию ката­ракты. А кости черепа наиболее интенсивно поглощают ЭМ излучение. У детей они тоньше, следовательно, у них формируется большая поглощенная доза. ЭМ из­лучение, испускаемое системами мобильной связи, относится к разряду неионизирующего. Квант излучения с частотой 900 МГц имеет энергию всего 4 мкэВ, что в 1000 раз меньше энер­гии, не­обходимой для акта ионизации атома или молекулы. Пульси­рующее микроволновое излучение, воздействуя на боль­шие биомолекулы (ДНК) приводит к из­менению структуры этих макромолекул, гибели кле­ток, а также к му­тациям. Следует учитывать, что информацион­ное воз­действие не имеет линейной зависимости, как термиче­ское: низ­кая интен­сивность может вызвать непропорциональный ответ в виде из­мененной функции. Низкочастотная пульсация мобиль­ного ап­парата с частотой 8 и 2 Гц соответствует частоте элек­трической активности коры головного мозга человека. Во время разговорв по сотовому телефону возбуждаются участки ГМ, ко­торые оста­ются активными около 30 минут. Поэтому мик­ровол­новое ЭМ излучение способно вызвать гибель 15% клеток с ин­тенсивностью 0,1 мВт/см2 в течение 30 мин. Дли­тельное воздей­ствие микроволнового излучения приводит к по­вышению риска возникновения злокачественных опухолей мозга и лейкозам. Рекомендации по снижению воздействия на организм человека: приобретать аппараты у официальных дилеров, не пользоваться сотовым телефоном без необходимости, не пользоваться лицам с заболеваниями: неврологического характера (неврастения, психопатия), неврозами, снижение па­мяти, расстройства сна, с эпилептической предрасп.,ограничить время разговора, чаще пользоваться услугами SMS, не разговаривать по сотовому телефону в автомобиле и металлических гаражах, изменять положение трубки в процессе разговора, держать телефон за нижнюю часть, если в кулаке, то ув на 70% мощность аппарата.

 

30. Природоохранное законодательство. Гарантии прав граждан на здоровую и благоприятную для жизни окру­жающую среду. Закон РБ «Об охране окружающей среды». Международное сотрудниче­ство РБ в области ох­раны окружающей среды.

Правовая охрана окружающей среды - совокупность пра­вовых норм, определяющих единые требования природо­охранной дея­тельности и также норм по охране вод, зе­мель, лесов, а также обеспечение их экологической безопасности. Эти нормы ука­заны в Конституции РБ, в природоохранном законодательстве.

Основные принципы экологического права: создание благоприятных условий для жизни, труда и от­дыха населения, рациональное и неистощительное использование при­родных ресурсов, платность природопользования, международное сотрудничество в области охраны окру­жающей среды, в статьях 45,46 предусмотрены права граждан на охрану здоровья, на благоприятную окружающую среду и на возмещение вреда,в статье 55 говориться, что охрана природной среды - долг ка­ждого.

В регулировании эко. отношений был принят Закон «Об охране окружающей среды», он имеет три цели: сохранение природной среды, оздоровление и улучшение качества окружающей среды, предупреждение и устранение отрицательного влияния хоз. деятельности на природу и здоровье.

В данном Законе закреплены принципы и правовые основа­ния природоохранной деятельности, права и обя­занности граж­дан и общественных объединений по ох­ране окружающей среды. Также предусмотрены охрана окружающей среды от вредного воздействия и разрушения озонового слоя, соз­дание особо ох­раняемых природных территорий. РБ является активной участницей международных кон­венций, протоколов и актов в области охраны окру­жаю­щей среды.

Конвенция о трансграничном загрязнении воздуха на большие расстояния. К ней приняты такие протоколы: о сокращении выбросов серы (Хельсинки), об ограничении выбросов окислов азота (София). Конвенция о биологическом разнообразии (Рио). Венская конвенция об охране озонового слоя. Монреальский протокол по веществам, разрушающим озоновый слой. Подписаны и действуют соглашения в области охраны окружающей среды в рамках межгосударственного эко­логического совета стран СНГ: Соглашения о книге редких и исчезающих видов живот­ных и растений - Красной книге. Соглашение об охране и использовании мигрирующих видов птиц и млекопитающих. Соглашение о взаимодействии в области экологии и ох­раны ок­ружающей природной среды.

 

31. Мониторинг: понятие, виды. Социально-гигиениче­ский мониторинг: цели и задачи, струк­тура.

Мониторинг окружающей среды – совокупность систем наблюдения, оценок и прогноза состояния природных сред и яв­лений, а также биологических откликов на изменение окружаю­щей среды под влиянием естественных и техногенных факторов. В РБ создана Национальная система мониторинга окружающей среды (НСМОС). Главной целью НСМОС является сведение во­едино информацию о состоянии окружающей среды и обеспече­ние всех уровней государственного управления и хозяйствова­ния необходимой экологической информацией для определения стратегии природопользования и принятия управленческих ре­шений, в том числе оперативных. Выделяют следующие уровни мониторинга: 1. локальный мониторинг – размеры зоны не превышают де­сятки километров. Если объектами наблюдения являются ло­кальные источники повышенной опасности, например террито­рия вблизи радиохимических предприятий, места захоронения радиоактивных отходов и т.д., то говорят об импактном монито­ринге (англ. Impact – воздействие, влияние). 2. регионарный мониторинг – осуществляется в пределах от­дельных крупных районов. Размеры зоны наблюдения – до тыс. кв. километров. 3. глобальный мониторинг – осуществляется на основе меж­дународного сотрудничества, проводится слежение за обще­мировыми процессами и явлениями в биосфере Земли и ее эко­сфере, включая все их экологические компоненты. Часто этот мониторинг называют фоновым или базовым.

По компонентам исследуемой биосферы можно выде­лить частные виды мониторинга различных сред – атмосферы, гидросферы, литосферы т.д., по факторам воздействия – ингредиентный мониторинг, к которому относится контроль за загрязняющими веществами и агентами (в т.ч. электромаг­нитным излучением), тепловым загрязнением, шумом, токсич­ными веществами и т.п. Мониторинг источников загрязнения включает в себя сле­жение за различными типами источников загрязнения: точеч­ными стационарными (заводские трубы, сосредоточенные сбросы промышленных предприятий, животновод. ферм и т.д.), точечными подвижными (транспорт), линейными или пло­щадными (сток с с/х полей, выпадение атмо­сферных осадков, рассеяние удобрений и их смыв и т.п.)

Биологический мониторинг – слежение за биогеоцено­зом с помощью биоиндикаторов. Биоиндикаторы – организмы или их сообщества, жизненные функции которых тесно связаны с определёнными факторами среды. Методами биоиндикации являются: 1. пассивный мониторинг – у свободно живущих организ­мов исследуются видимые или физиологические и биохимиче­ские повреждения или отклонения от нормы, являющиеся при­знаками стрессового воздействия. 2. активный мониторинг – у тест-организмов, находящихся на исследуемой территории в стандартизованных условиях, пы­таются обнаружить те же изменения, что и у свободно живущих организмов.

Для проведения активного мониторинга используют сле­дующие биоиндикаторы:

1. Табак, шпинат, фасоль – биоиндикаторы тропосферного О3, выявляются некрозы верхней стороны листьев.

2. Листовые и кустистые лишайники, хвойные породы де­ревьев (ель, сосна, пихта) – биоиндик. сочетания вредных ве­ществ в воздухе с преобладанием оксидов серы.

3. Медоносная пчела – биоиндик. ионов F, Pb, Mn, Zn, Cd, Cu, определяют по накоплению в мёде.

4. Олений и исландский мох – биоиндик. радионуклидов Sr и Cs, определяют по накоплению в сухом в-ве.

Подсистемами биологического мониторинга являются сани­тарно-гигиенический мониторинг (определение состояния здо­ровья человека под воздействием окружающей среды) и генети­ческий (наблюдение возможных изменений наследственных признаков у различных популяций).

Экологический мониторинг – определение состояния абиотической составляющей биосферы и антропогенных изме­нений в экосистемах, обусловленных воздействием загрязнения, с/х использованием земель, урбанизацией и т.д. Его можно подразделить на биоэкологический, геосистем­ный и биосферный в зависимости от уровня рассматриваемой экосистемы (организм или популяция, геосистема, биосфера).

Различают экстренные виды мониторинга, актуальные при решении при насущных мировых проблем, к которым относят повышение концентрации СО2 в атмосфере, истощение озоно­вого слоя, аварии нефтяных танкеров и т.д.

Социально-гигиенический мониторинг (СГМ) – система специальных наблюдений, оценки и прогнозирования состояния здоровья населения в зависимости от состояния среды обитания человека и условий его жизнедеятельности, включающая разра­ботку комплекса оздоровительно-профилактических мероприя­тий по предотвращению и устранению неблагоприятного воздей­ствия на организм человека факторов среды его обитания.

Решаются след. задачи: организация наблюдений за состоянием здоровья населе­ния и среды обитания человека и условий его жизнедея­тельности. Получение информации, необходимой для реализации це­лей мониторинга, из Министерства статистики РБ, Министер­ства образования РБ, Министерства торговли РБ и др. респуб. органов гос-го управления, местных исполнительных и рас­порядительных органов. Идентификация факторов, оказывающих вредное воздей­ствие на человека, путём выявления причинно-следст­венных связей между состоянием здоровья и воздействием фак­торов среды обитания человека. Прогнозирование состояния здоровья населения. Обоснование, разработка и организация выполнения про­грамм по вопросам обеспечения санитарно-эпидемического благополучия и охраны здоровья населения, профилактики за­болевание и оздоровления среды обитания человека. Программное и инженерно-техническое обеспечение мониторинга на основе современных научных решений и внедре­ния современных информационных технологий. Координация межведомственной деятельности по мониторингу. Информирование гос. органов, юридических лиц и граж­дан о результатах, полученных в ходе мониторинга.

 

32. Оценка риска здоровью человека, обусловленного загрязнением окружающей среды: понятие, этапы, мо­дели оценки дозозависимых реакций организма на дейст­вие канцерогенных и неканцерогенных веществ.

Оценка риска включает несколько последовательных ста­дий: идентификацию опасности, оценку воздействия, определе­ние дозовой зависимости эффекта и расчёт конкретного риска. 1) Идентификация опасности – подразумевает учёт тех факторов, которые способны оказать неблагоприятное воздейст­вие на здоровье человека. Этот этап включает анализ экологи­ческой обстановке, учёт и регистрацию хим. веществ, исполь­зуемых в пром. и других целях. На этом этапе воз­можно проведение выборочных скрининговых исследований окр. среды с целью выявления тех «опасностей», которые могут иметь место и ранее не учтены. На этом этапе процедуры оценки риска анализ ведётся на качественном уровне. Воздействия подразделяются на острые (когда одно или несколько воздейст­вий повторяются в течении нескольких дней), субхронические (повторяющееся в теч. 14-90 дней) и хронические (действие ксенобиотиков осуществляется в теч. года или на протяжении всей жизни). 2) Оценка воздействия. На этой стадии определяют фак­тические уровни экспозиции и поглощения ядовитого вещества в данной совокупности индивидуумов. Экспозиция – контакт орга­низма с хим или био агентом. Экспозиция может быть рассчитана как величина воздействия – масса веще­ства, отнесённая к ед. времени (мг/день), или как поглощённая доза (ПД) (мг/кг): ПД= КК*Пост*Прод*Част/М

КК-конц. ксенобиотика, Пост-кол-во потуп-го вещ-ва, Прод- продолжит. возд., Част-частота возд-я, М-масса тела. Или ПД= КК*v(m,V)/M (v,m,V-кол-во потребляемой воды, продукта, вдыхаемого воздуха).

ПД для детей будет выше из-за разной массы тела. В этом случае говорится о среднесуточной поглощённой дозе – ССПД. При хроническом воздействии поглощение на разных этапах жизни человека будет отличаться. В этом случае рассчитывают среднесуточную дозу на жизнь – ССДЖ. ССДЖ = (1/70*ССПДмладенца)+(5/70*ССПД1-6)+(6/70*ССПД7-12)+ (6/70*ССПД13-18)+(52/70*ССПД19-70). Часто сама по себе среднесуточная поглощённая доза для взрослого используется вместо ССДЖ, т.к. зрелая часть возраста превалирует во всей продолжительности жизни.

Оценка воздей­ствия включает 3 подэтапа:

1) характеристика окружающей обстановки, которая преду­сматривает анализ основных физ. параметров ис­следуемой области (климат, гидрогеологические условия, растительность, тип почв и др.) и характеристику популяций, потен­циально подверженных воздействию (места проживания, виды деятельности, демографический состав, расположение жилых районов и т.д.)

2) идентификация маршрутов воздействия и потенциаль­ных путей распространения. Маршрут воздействия – путь хими­ческого вещества от источника до экспонируемого организма. Составными частями полного маршрута воздействия являются:А) источник и механизм выброса химического вещества в окр. среду. Б) среда распространения хим. вещества (воздух, грунтовые воды) В) место потенциального контакта человека с загрязнённой окр.средой (точка действия). Г) контакт человека с хим.веществом при потреблении воды, продуктов питания, дыхания и через кожные покровы. 3. количественная характеристика экспозиции предусматри­вает установление и оценку величины, частоты и продолжитель­ности воздействия для каждого анализируемого пути, иденти­фицированного на втором подэтапе. Этот подэтап состоит из 2 стадий: оценки воздействующих концентраций и расчёта посту­пления. Оценка воздействующих концентраций включает опре­деление конц. хим. веществ. воздействующих на организм в теч. периода времени. Концентрация – это содержание конкретного загрязнителя в конкретной среде в ед. объёма в опр.промеж. времени.

3) Дозовая зависимость. Определяется экспериментально на уровне достаточно высоких, явно действующих доз, а оценка действия реального уровня загрязнения осуществляется методом экстраполяции. Общепринятыми являются 2 модели, описываю­щие зависимомть в координатах доза-эффект: 1. Пороговая модель для неконцерогенных веществ. Предполагает наличие порога, ниже которого изучаемые фактор практически не действует.

Минимально недействующая доза (МНД) – это доза, при ко­торой эффект не неаблюдается. Иногда МНД трудно опредилить. Тогда используют другой параметр: минимальная действующая доза (МДД). МНД рассчитывается путём деления МДД на коэф­фициент запаса (Кз), равный 10. В свою очередь, разделив МНД на коэф. запаса, получают значение – референтной дозы (RfD): RfD = МНД/Кз 2.Беспороговая зависимость для веществ с канцерогенной активностью – оценивает канцерогенные эффекты по беспоро­говому принципу. Это означает, что любые, даже самые малень­кие концентрации могут приводить к злокачественному переро­ждению клеток. Графически - это прямая линия, а математиче­ски: КР= ССПД*ПИКР(ППКР)*а, где КР-дополнительный канцерогенный риск, ССПД-среднесу­точная поглощенная доза, ПИКР(ППКР)-значение потенциаль­ного ингаляционного канцерогенных рисков, а=1=70/70 – вели­чина, отражающая кол-во лет, в теч. которых индивидуум под­вергался воздействию при допущении, что он постоянно живёт в изучаем месте (70лет), делённых на общ. кол-во лет ожидаемой средней продолжительности жизни (70лет).

4) Оценка риска. Обобщение результатов предыдущих этапов. Он включает помимо количественных величин риска анализ и характеристику неопределённостей, связанных с оцен­кой, а также обобщение всей информации по оценке риска. Су­ществуют 4 основных неопределенности: статистическая выборка, модель доза-эффект, исходная выработка баз данных, неполнота использованных моделей. Эта стадия позволяет предусмотреть вероятность неблаго­приятного эффекта в человеческой популяции в зависимости от токсического воздействия и определяет его допустимые уровни.

 


Дата добавления: 2018-02-15; просмотров: 711; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!