Эндемическая недостаточность поступления йода в организм человека. Струмогенные факторы.



Основной этиологический фактор возникновения йодде­фецитных состояний в нашей республике – недостаток йодах почвах, в воде и, соответственно, продуктах питания, производимых на данной территории. С растительной пищей в организм человека поступает 58,3% йода от общей ежесу­точной потребности, с мясом – 33,3%, с водой – 4,2%; ос­тальное количество йода поступает ингаляционным путем и через кожу. Содержание йода в окружающей среде зависит главным образом от типов почв и их способности удерживать и отдавать йод, от расположения над уровнем моря и отда­ленности от морей и океанов: по мере удаления почва ста­новится все менее обогащенной данным микроэлементом. В случае преобладания в рационе питания продуктов местного производства развивается дефицит йода разной степени вы­раженности. В Беларуси 63,5% территории представлено дерново-подзолистыми почвами, в которых йод содержится в недос­таточном количестве, 14,7% - торфяными (болотными), ха­рактеризующимися прочным связыванием йода с органиче­скими соединениями. В формировании эндемического зоба значительный вклад вносит фактор дефицита в почвах Беларуси и, следо­вательно, продуктах питания других микроэлементов: се­лена, меди, цинка, железа, молибдена, магния, марганца, выступающих в роли кофакторов ряда ключевых ферментов обмена. В частно­сти, селен является компонентом дейоди­наз, участвующих в конверсии тироксина (Т4) в трийодити­ронин (Т3) путем дейоди­рования наружного кольца Т4 в тканях и органах-мишенях, на­пример в печени, кишечнике, мозге, бурой жировой ткани, пла­центе и др. дефицит меди приводит к снижению активности ци­тохромоксидазы, церу­лоплазмина и йодиназы, активирующей присоединение йода к тирозину. Струмогенное действие дефицита кобальта реализуется через снижение активности йодпе­роксидазы щитовидной железы, в результате чего замедляются про­цессы биосинтеза тиреоидных гормонов.

Нормы потребления йода по рекоменда­циям ВОЗ: 120-150мкг/сут.

 

15. Фазы детоксикации ксенобиотиков. Система мик­росомального окисления. Понятие о метаболической активации. Индукторы и ингибиторы микросомального окисления.

Подавляющая часть загрязнителей — не растворимые в воде гидрофобные соединения концентрируются в жировой ткани или мембранах. Дальнейший метаболизм ксенобиотиков затрудните­лен, так как значительная часть реакций в клетке протекает в водной фазе. Трудность состоит и в транспортировке (кровь -водная среда).

Фазы детоксикации: 1. химическая модификация, придание токсическим со­единениям гидрофильных свойств, которые облегчают их солю­билизацию, т.е. растворение. Это происходит путем образования или введения в состав молекул групп ОН, NH2 и др. 2. ковалентная конъюгация, ведущая к образованию транспортных, форм ксенобиотиков и способствующую их выве­дению из организма. Другой механизм экскреции ксенобиотиков-выведения из клетки с помощью Р-гликопротеинов или с помощью резистент­ных белков с низкой специфичностью.

Дальнейшая судьба экс­кретируемых ксенобиотиков состоит в связывании их с альбуми­ном плазмы крови или лигандом, которые уменьшают их токсич­ность. Все эти процессы требуют расхода энергии в виде НАДФН или АТФ.

Главная роль в хим.модифик. принадлежит микросомам. В мембранах ЭПР локализована система монооксигеназного окис­ления, обладающая низкой специфичностью. в 1950 г. в клетках печени, основной компонент - цитохром Р-450. В микросомах проходит метаболизм гидрофобных ядов, ле­карств, канцерогеных веществ, стероидных гормонов, липидов. Полиспецифичность микросомного окисления объясняется свой­ствами цит. Р-450, функционирующего в виде различных изо­форм. Изоформы цит. Р-450 - гемопротеины. Они имеют общее строение активного центра, содержащего гемовое железо. Окисление гидрофобных субстратов в микросомах идет по трем основным путям: 1. включение атома О2 в связь между атомом водорода и атомом молекулы-субстрата (гидроксилирование) 2. добавление атома О2 в пи-связь (эпоксидирование) 3. присоединение атома кислорода к молекуле (окисление).

Наиболее типичная ферментативная активность микросо­мной системы — окисление липофильных субстратов, осуществ­ляемое с помощью активации молекулярного кислорода (моно­оксигеназные реации): R-H+NADFH+O2+2H+=R-OH +NADF++H2O. Необходимые кофакторы микросомного окисления — вос­становленные нуклеотиды (НАДФН и НАДН), которые взаимо­действуют с цит. Р-450 через флавопротеин-НАДФН-цитохром Р-450-редуктазу. Некоторые разновидности цит. Р-450 локализу­ются в митохондриальной мембране.

Показано, что цит. Р-450 кодируется семейством «суперге­нов», которое составляет по крайней мере 50 генов, организо­ванных в несколько мультигенных семейств. Гены СYРI несут информацию о ферментах, участвующих в обезвреживании ароматических углеводородов. Высокая актив­ность СYР1А2 в организме появляется в ответ на курение и свя­зана с увеличенным риском заболевания раком толстого кишеч­ника. CYPII участвуют в метаболизме некоторых лекарственных соединений, CYPIII — в метаболизме стероидов.

Некоторые группы изоформ цит. Р-450, способны метаболи­зировать почти все липофильные искусственно синтезированные соединения: лекарства, пестициды и гербициды. Изоформы цит. Р-450 могут синтезироваться после проникновения в орга­низм новых низкомолекулярных соединений подобно Ат.

Домен ДНК, участвующий в индукционном ответе на попа­дание в организм ароматических углеводородов, - Ah-домен (англ. Aromatic hydrocarbons). В цитоплазме ксенобиотик присоединяется к белковому комплексу,(Ah-рецептор - состоит из собственно рецептора AHR, белков теплового шока HSP и белка AIP. Группа сопутствующих протеинов предназначена для правильного ориентирования и стабилизации рецептора. Связывание сопровождается отщепле­нием HSP- и AIP-рецептора. Облегченный комплекс транспортируется в ядро, где формирует гетеродимер с белком - ядерным проводником ARNT (AHR Nuclear Translocator). Сформированный димер присоединяется к CYP-гену ДНК и активирует транскрип­цию мРНК, кодирующую аминокислотную последовательность цит. Р-450, который и запускает процесс гидроксилирования ксенобиотика.

Увеличение активности изоформ цит. Р-450, участвующих в метаболизме гормонов, происходит в ответ на изменение гор­монального статуса организма и существенно зависит от пола, возраста, периода репродуктивной активности животного.

Ингибиторы метаболизма ксенобиотиков в системе моноок­сигеназ —соединений, имеющих в своей структуре молекулу имидазольного кольца. Некоторые химические агенты (амфета­мины, антибиотик олеандомицин) в результате метаболической активации способны жестко связывать цит. Р-450, полностью ингибируя его активность. Ингибиторами являются угарный газ, соли тяжелых металлов (Со, Сd, РЬ), хлороформ.

Индукторы монооксигеназной реакции - это фенобарбитал, кордиамин и полихлорированные бифенилы.

Цит. Р-450 - ключевой фермент в элиминации, детоксикации и метаболической активации экзогенных субстратов. Элиминация. Окисление приводит к увеличению гидро­фильности чужеродных соединений. Это способствует их выве­дению или ускоряет реакции последующей детоксикации. Детоксикация. Потеря молекулой ее биологической актив­ности, токсичности. Метаболическая активация. Продукт монооксигеназной реакции становится более активным соединением, чем моле­кула, из которой он образовался.

образование из бензпирена окисленных производных связываться с ДНК, вызывая мутагенез и канцерогенез, эстрогены могут быть метаболизированы цитохромом Р-450 путем образования 2-гидрокси-эстрона (снижает действие эстро­гена и уменьшают риск рака) или 16-гидро­ксиэстрона (усиливает действие эстрогена и ув-т риск рака мо­лочной железы- ускоряется жирной пищей), катаболизм лекарственного препарата местранола. Само ле­карство имеет слабое сродство к эстрогеновым рецепторам. В процессе обезвреживания, т.е. деметилирования, оно превра­щается в этинилэстрадиол. Резко увеличивается сродство к ре­цепторам, что позволяет активно вмешиваться в функц-ние эндокринной системы.

 

16. Элиминация ксенобиотиков. Конъюгация ксено­биотиков: понятие, ферменты, участвующие в реак­циях конъюгации, регуляция их активности.

Ксенобиотики – это любые чужеродные для организма со­единения, которые способны вызывать в нем опреде­ленные изменения, в том числе заболевания и гибель.

Элиминация. Липофильные молекулы с трудом выводятся из биологических мембран, т.к. образуют гидрофобные связи с молекулами мембранных структур. Окисление определенных групп молекулярным кислородом в резуль­тате монооксиге­назных реакций приводит к увеличению гидрофильности чужеродных соединений. Это способст­вует их выведению или ускоряет реакции последующей детоксикации, как пра­вило, с участием ферментов, осу­ществляющих их конъюга­цию с белками, что значительно облегчает выведение этих соединений из организма. Реакции конъюгации — это реакции биосинтеза, которые протекают с потреблением энергии. Важным обстоятельст­вом этих реакций является особенность их внутриклеточной локализации. Значительная часть реак­ций конъюгации про­текает на мембранах ЭПС, непо­средственно в месте образова­ния под влиянием оксидаз со смешанными функциями высокореактивных метаболитов. Это позволяет свести до минимума токсическое действие промежуточных продук­тов метаболизма ксенобиотиков.

Ферменты, участвующие в реакциях конъюгации: Глютатион-8-трансфераза (ГТ-аза) - детоксифицирующий фермент, который катализирует реакцию взаимодействия глютатиона с токсичными электрофильными соедине­ниями, приводя к образованию менее ядовитых и более раствори­мых в воде компонентов, которые могут быть легко экскре­тированы из организма. Компоненты, стиму­лирующие актив­ность ГТ-азы, рассматриваются как ингибиторы злокачест­венного процесса. Вещества, способные стимулировать дея­тельность ГТ-азы, включают фталиды в семенах сельдерея, аллилсульфиды в чесноке и луке, дитиотионы и изотиоциа­наты в брокколи и других ово­щах, лимоноиды в цитрусовых.

Один из шести индивидуумов в популяции (примерно 17% населения) наследует от родителей дефектный по глюта­тион-8-трансферазеген. По активности этого энзима всех людей можно разделить на три группы: клетки ко­торых не способны к конъюгации, слабоконъюгирующие и высоко­конъюгирующие. Детоксикация ксенобиотика может происходить путем его конъюгации с глюкуроновой кислотой, сульфатом, глицином. Введение в организм D-глюкаровой кислоты (сахарная ки­слота) способствует образованию D-глюкаро-у-лактона (са­харолактона), который ингибирует превращение УДФ-D-глюкуроновой кислоты в глюкуроновую кислоту. Дан­ный процесс катализируется B-глюкоронидазой, для ко­торой упомянутый лактон является ингибитором. В свою очередь, накопление активной формы глюкуроновой ки­слоты будет способствовать реакции образования глюку­ронидов, т.е. процессу обезвреживания чужеродных для организма соединений. Глюкаровая кислота входит в со­став фруктов, а также выпускается в виде биологически активной добавки к пище. Множественные формы ферментов (изоферменты) ГТ-аза, УДФ-глюкуронил-трансфераза и сульфотрансфераза - также выражены в организме млекопитающих. Обра­зующиеся при этом соединения выводятся из организма через почки, лег­кие, кишечник, слюнные, потовые и сальные железы.

 

17. Вредные химические вещества естественного проис­хождения. Биогенные амины.

Пищевые продукты представляют собой сложные многокомпо­нентные смеси, состоящие из сотен химических соединений. В состав пищевых продуктов входят, в основном, три группы со­единений. Нутриенты - белки, липиды, углеводы, минеральные вещества и витамины, которые требуются организму для пласти­ческих целей, в качестве источников энергии, для нормального течения процессов пищеварения и метаболизма. Неалиментарные компоненты - соединения, участвующие в формировании органолептических качеств пищевого продукта. К ним отно­сятся: предшественники нутриентов, продукты их распада, а также другие БАВ. Большинство веществ этой группы находится в продуктах питания в незначи­тельных количествах. Среди них различают:

1. антиалиментарные факторы - вещества, препятствующие пе­ревариванию или утилизации нутриентов (например, ингиби­торы протеаз, содержащиеся в бобовых); 2. вредные химические вещества природного происхождения: постоянные компоненты некоторых натуральных продуктов (ал­калоиды, пептиды); 3. вещества, содержащиеся в продуктах при определенных условиях (соланин в картофеле); 4. микроэлементы в высоких концентрациях за счет существования аномальных биохимических провинций.

Значительная часть химических соединений, обладающих ток­сичными свойствами и содержащихся в продуктах питания, имеет естественное происхождение. Ежедневное поступление ксенобиотиков естественного происхождения при обычной диете человека составляет около 2 г, а поступление синтетических пестицидов равно 0,09 мг. Некоторые из соединений обладают выраженной канцерогенной активностью. Для количественной оценки канцерогенной активности в модельных условиях ис­пользуют индекс относительной канцерогенной активности (ОКА). ОКА показывает, какой процент потенциальной канцеро­генной активности, тестированной на лабораторных животных, получает человек ежедневно на протяжении своей жизни. Чем меньше значение индекса ОКА, тем выше потенциальная канце­рогенная активность продукта. Несмотря на поступление в орга­низм человека соединений с выраженной канцерогенной актив­ностью, их действие во многом нивелируется: 1) системой де­токсикации ксенобиотиков; 2)антиканцерогенным действием (антиоксиданты - аскорбиновая кислота, витамины Е и А; монотерпен-лимонен-в цитрусовых.) Важно поступление в ор­ганизм достаточных количеств антиканцерогенных соединений, которые способны нейтрализовать действие ксенобиотиков есте­ственного и антропогенного происхождения. Биогенные амины (БА) могут образовываться МО, например при ферментативном декарбоксилировании. Произведенные с по­мощью микробиологической техники продукты питания (сыры, пиво) содержат значительное количество БА. При порче продук­тов питания увеличивается содержание БА вследствие деятель­ности МО. Высокое поступление аминов с продук­тами питания при одновременном приеме определенных меди­каментов способно повышать кровяное давление, например че­рез 1) тирамин, обычно расщепляющийся в кишечнике с помо­щью фермента моноаминооксидазы (МАО). МАО может ингиби­роваться гипотензивными препаратами, антидепрессантами или противотуберкулезными препаратами таким образом, что кон­центрация тирамина в кишечнике увеличивается. В этом случае всасывается большое количество тирамина, что способствует освобождению норадреналина из симпатических нервных окон­чаний и повышению АД. Содержание тирамина в продуктах питания составляет в сред­нем около 50 мкг/г. Однако в некоторых их них (шоколаде, сыре, пиве, вине и квашеной капусте) тирамин содержится в по­вышенных количествах. Сыр может содержать до 900 мкг/г. Пациентам с высоким АД частое употребление этих продуктов питания может быть небезвредно. 2)серотонин (в бананах, грецких орехах, помидорах), увеличи­вает АД. 3) гистамин, (в некоторых сортах вин, где его содержание может достигать 25 мг на литр), способен вступать в соединение с этанолом. Прием значительных количеств гистамина ведет к острой интоксикации у человека, которая выражается сильными голов­ными болями и спазмами гладкой мускулатуры. Содержание БА в продуктах питания может был. снижено про­мывкой водой или сменой консервирующей жидкости.

 

18. Ртуть (Hg) - токсичный загрязнитель пищевых продук­тов и воды. Проведение демеркуризации в быту.

Ртуть - рассеянный элемент. В атмосферу поступает как в ходе природных процессов (испарение со всей поверхности суши; возгонка ртути из соединений, находящихся в толще земной коры; вулканическая деятельность), так и за счёт антропоген­ной деятельности (пирометаллургия; цветная металлургия; сжи­гание любого органического топлива).

Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферным осадками, включаясь в кру­говорот в почве и в воде (ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). Метилирование неорганической ртути - ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Метилирование ртути МО подчиняется следующим закономерностям: 1)преобладающий продукт биол.метилирования ртути при РН=7 - метилртуть 2)сорость метилирования при окислительных усло­виях выше, чем при анаэробных 3) кол-во образуемой метил­ртути удваивается при десятикратном увеличении содержания неорганической ртути

Ртуть постоянно присутствует в теле человека, но не явля­ется эссенциальным микроэлементом. Ртуть отличается высокой токсичностью для любых форм жизни. Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны метилртуть, этилртуть. Они больше накапливаются в ор­ганизме, лучше растворяются в липидах, легче проникают через биомембраны. Чувствительность НС к метил- и этилртути высока.

В организм человека ртуть может попадать с продуктами пи­тания раст. и жив. происхож., продуктами моря, атмосферным воздухом и водой.

В производственных ус­ловиях основное значение имеет поступление ртути в организм через дыхательные пути виде паров или пыли. Пары ртути полно­стью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25мг/м3. Резорбция ртути в ЖКТ зависит от вида соединения: резорбция не­органических соединений составляет 2-15%, фенилртути-50-80%,метилртути-90-95%. Ртуть преимущественно накапливается в почках, селезёнке и печени. Органические соединения с белками легко проникают через ге­матоэнцефал. и плацентарный барьеры и накапливаются в го­лов.мозге, в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови.

Неорганические соединения ртути нарушают обмен аскор­биновой кислоты, пиридоксина, кальция, меди, цинка, селена. Органические соединения - обмен белков, цистеина, аскорбино­вой кислоты, токоферолов, железа, меди, марганца, селена.

Выводится ртуть из организма железами ЖКТ, поч­ками, потовыми и молочными железами, лёгкими. В грудном мо­локе обычно содержится 5% от концентрации её в крови. Неорганические соединения выделяются преимущественно с мо­чой (период полувыведения-40 сут), а органические на 90% с калом и желчью(период полувыведения из организма-76 сут). Из организма новорождённых ртуть выводится медленнее. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо.

Ртуть накапливается преимущественно в ядре клетки, затем в микросомах, цитоплазме, митохондриях. В основе механизма действия ртути лежит блокада биологически актив­ных групп белковой молекулы и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути в молекулу тРНК.

В начальные сроки воздействия малых концентраций ртути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание активности МАО митохондриальной фракции печени. Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы ЦНС. Вначале возбудимость коры по­вышается, затем приобретает инертность. В дальнейшем разви­вается запредельное торможение. Неорганические соединения ртути обладают нефротоксичностью. Есть сведения о гонадоток­сическом, эмбриотоксическом и тератогенном действии соедине­ний ртути.

Основные проявления хронического воздействия малых концентраций ртути: повышенная нервозность, ослабление па­мяти, депрессия, парестезия, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данным симптомам могут присоединяться симптомы поражения ССС. Всё это обусловлено воздействием ртути на энзиматическую активность клеток, уве­личением концентрации внутриклеточного Са, ингибиро­ванием синтеза ДНК и РНК.

Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и др гидробионтов, выловленных из водоёмов, загрязнённых рту­тью (Япония).

При попадании любого кол-ва ртути в жилую зону следует выполнить следующие мероприятия:1)Изоляционные мероприя­тия: необходимо изолировать местонахождение ртути и само по­мещение. Надеть марлевую повязку и вывести из помещения всех жильцов. Открыть окна помещения и накрыть место с рту­тью мокрой газетой. Загрязнённые вещи вынести из помещения. Плотно закрыть входную дверь и заклеить щель. 2)Мероприятия по снижению испаряемости ртути: снизить температуру в поме­щении (открыть окна). Прекратить действия в данном помеще­нии. Изолированное помещение оставить на несколько часов. 3) Механическая демеркуризация: надеть одежду из синтетиче­ского материала, работать в резиновых перчатках. Необходимо приготовить стеклянную банку с крышкой, толстую иглу или вя­зальную спицу, мед .шприц, кусочки пластыря, лист плотной бу­маги, настольную лампу. Смысл этого этапа состоит в сборе ка­пель в герметичную ёмкость. Для закатывания капель на лист бумаги используют толстую иглу или спицу. Поверхность под­свечивают настольной лампой. Кусочки пластыря используют для сбора мелких капель. С помощью мед шприца и толстой иглы ртуть достают из щелей. Не рекомендуется пользоваться пылесосом. Банку с собранной ртутью обязательно отдать пред­ставителям МЧС. 4) Химическая демеркуризация: для этого не­обходим раствор с окислительными свойствами. На литр воды добавляют несколько кристаллов марганцовки, столовую ложку соли и столовую ложку уксусной эссенции. Наносить раствор на места, где производили сбор ртути, особенно в щелях. Раствор следует оставить нанесённым на 6-8 часов, периодически сма­чивая водой обработанную поверхность. В заключение обработанную поверхность следует тщательно промыть всё помещение.

 


Дата добавления: 2018-02-15; просмотров: 1206; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!