Бог ИГРАЕТ в кости... и ПРИ этом НЕ жульничает» (Вернер Гейзенберг) 9 страница



Со стороны кажется, что динамические системы ведут себя беспорядочно. Но Лоренц продемонстрировал, что при наличии достаточно точных данных об окружающей среде поведение даже таких систем оказывается предсказуемым. Динамические системы представляют собой детерминистический хаос, или просто хаос. В отличие от систем, демонстрирующих беспорядочное поведение, судьба хаотических систем все-таки может быть предсказана, и (как убедился Лоренц) они крайне чувствительны к тончайшим исходным влияниям.

 

ЕШЕ РАЗ ДЕЖАВЮ

Помимо чувствительности динамические (или хаотические) системы характеризуются еще одной фундаментальной чертой: итерацией. Что такое итерация? Это просто-напросто повторение структуры — будь то физическая структура или поведенческая. Например, если мы сделаем съемку береговой линии океана со спутника, с самолета, с корабля и с пляжа, а затем сравним очертания берегов на разных снимках, то везде увидим автомодельные (или самоподобные) формы. Аналогичным образом, из повторяющихся автомодельных структур разных масштабов состоит дерево — очертания всего дерева похожи на очертания большой ветки, которые, в свою очередь, опять повторяются в каждой маленькой веточке.

В математике итерация представляет собой повторяющееся применение одной и той же функции или формулы, когда данные, полученные на выходе каждого этапа, используются в качестве входящих данных для следующего этапа. Например, рассмотрите следующее итерированное уравнение:

Длина отрезка : 2 =

Например:

12 дюймов : 2 = 6 дюймов

Повторим процесс:

6 дюймов : 2 = 3 дюйма 3 дюйма : 2 = 1,5 дюйма 1,5 дюйма : 2 = 0,75 дюйма 0,75 дюйма : 2 = 0,375 дюйма

И так далее: каждый следующий отрезок становится вдвое короче предыдущего до тех пор, пока ваш карандаш не окажется слишком толстым, чтобы начертить очередной отрезок. Но и тогда итеративное уравнение может продолжаться. Так, вы смогли бы увидеть более маленькие отрезки иод микроскопом.

В этом итерированном уравнении мы используем одномерный отрезок, а потому в результате у нас получаются просто все новые отрезки меньшей длины. Однако если применить итерацию к двумерному объекту, например к треугольнику, то в результате итерирования получится объект большой сложности.

Построение двумерной снежинки Коха начинается с простого равностороннего треугольника. Далее начинается итерирование, суть которого состоит в следующем: на каждой стороне треугольника строим новый равносторонний треугольник, периметр которого равен длине стороны, на которой он построен; применяя эту формулу снова и снова, мы будем добавлять на каждую вновь созданную сторону все меньшие и меньшие треугольнички.

Снежинка Коха — пример итерированной структуры, созданной на основе двумерного объекта. При итерировании трехмерных объектов результат получается еще более сложным.

Задумайтесь над следующим фактом: все виды животных на планете, от червей до кашалотов, представляют собой многомерные системы, состоящие, по сути, из итерированных клеточных структур. Эти сложные системы (организмы), а также среда, где они обитают, — хаотичны. Однако, когда мы применяем математическое моделирование, они становятся — вы готовы это услышать? — предсказуемыми!

Именно эту концепцию предсказуемого хаоса имел в виду Галилео Галилей, когда сказал: «Математика — это язык, на котором Бог написал Вселенную».

 

На примере снежинки Коха мы видим, как из

такой простой геометрической формы, как равносторонний треугольник, мы можем получать все более сложные фигуры

На приведенной выше иллюстрации исходный треугольник А изображен светло-серым цветом. Результаты каждого нового итерирования изображены все более темными (фигуры Б, В и Г). Насколько сложные объекты позволяет создать этот процесс, видно на рисунке Д, где все треугольники слиты в одну фигуру. При сравнении простого треугольника, с которого все началось, с результатами каждого последующего применения нашей формулы, становится очевидно, что каждое итерирование значительно увеличивает сложность фигуры.

 

ФРАКТАЛЫ: МАТЕМАТИКА И РЕАЛЬНЫЙ МИР

Итак, все, что нам требуется, — это выяснить, какие математические уравнения использовались при создании Вселенной. Тогда можно будет понять, как мы сюда попали и куда движемся. Поскольку мы пытаемся понять структуры окружающей среды и, в частности, то, как они соотносятся с биосферой, нам нужно обнаружить те математические формулы, с помощью которых Природа организовала в пространстве физические объекты.

Такая задача подразумевает использование геометрии, ибо по определению этот раздел математики особо занимается свойствами, мерами и взаимоотношениями структур в пространстве. Геометрия играет столь фундаментальную роль в организации Вселенной, что Платон еще задолго до Галилея заключил: «Геометрия существовала до мироздания».

Вплоть до 1975 года широкая публика была знакома только с принципами евклидовой геометрии, которая изложена в 13-томном древнегреческом труде Евклида «Начала», написанном около 300 года до нашей эры. Именно эту геометрию большинство из нас изучали в школах, когда рисовали в своих тетрадках кубы, шары и конусы. При помощи геометрии Евклида люди сумели описать движение небесных тел, построить величественные здания, разбить строго упорядоченные сады, сконструировать космические корабли и сложнейшее оружие.

Однако формулы, используемые геометрией Евклида, не применимы, когда дело доходит до Природы. Например, какое дерево вы сможете создать при помощи стандартных идеальных форм евклидовой геометрии? Вспомните-ка то дерево, которое вы рисовали в детском саду: круг, насаженный на продолговатый прямоугольник. Ваша воспитательница, несомненно, соглашалась, что на рисунке изображено именно дерево, но эта картинка описывала дерево не лучше, чем схематический портрет «точка-точка-запятая» описывает человека.

Вооружившись знанием евклидовой геометрии и циркулем, вы можете начертить безупречную окружность. Но безупречное, и даже реалистическое, дерево при помощи геометрии не изобразишь. И точно так же не нарисуешь с ее помощью жука, гору, облако или любой другой привычный нам природный объект. Геометрия Евклида пасует, когда речь заходит об описании естественных природных структур. Так где же нам искать ту математику, о которой говорили Платон и Галилей, — математику, описывающую дизайнерские принципы, используемые Природой?

Ключ к этой загадке впервые попал к людям в руки около девяноста лет назад, когда молодой французский математик Гастон Жюлиа опубликовал статью о своей работе с итерированными функциями. Он оперировал сравнительно простой формулой, где использовалось лишь умножение и сложение. Чтобы визуализировать закодированный в его уравнении образ, так называемый фрактал, Жюлиа пришлось бы повторить процедуру итерации миллионы раз, на что ушли бы десятилетия. Так что он так никогда и не увидел зримого воплощения своих идей.

Глубочайшее содержание формулы Жюлиа раскрылось лишь в 1975 году, когда его уравнение было обработано при помощи компьютеров. Первым человеком, воочию увидевшим то, что Жюлиа мог только представлять, был математик Бенуа Мандельброт, работавший в вычислительной лаборатории IBM и занимавшийся анализом закономерностей в хаотических системах. Мандельброт был потрясен изысканной органичностью и бесконечной сложностью генерируемых фрактальными формулами образов. Он видел, как на любом уровне в них обнаруживаются повторяющиеся автомодельные структуры. И сколько бы Мандельброт ни увеличивал графический образ, составляющие его структуры оставались неизменными.

Итак, внутри хаотической сложности фрактальных образов присутствуют бесконечно повторяющиеся структуры, вписанные друг в друга. Грубой иллюстрацией того, что представляют собой фрактальные повторяющиеся образы, может служить известная во всем мире русская матрешка. Каждая меньшая куколка подобна, но не обязательно идентична большей куколке, в которую она вкладывается. Именно Мандельброт назвал подобного рода объекты автомодельными (самоподобными) и стал описывать их при помощи нового раздела математики, который он же назвал фрактальной геометрией.

Наблюдая сложные фрактальные образы, Бенуа Мандельброт обнаружил отчетливые формы, присутствующие в Природе: у насекомых, ракушек, деревьев и так далее. Наука на протяжении всей своей истории не раз описывала наличие автомодельных организационных единиц на разных уровнях природных структур. Но до того, как появилась фрактальная геометрия, такие автомодельные структуры считали всего лишь любопытным совпадением.

Фрактальная геометрия особо подчеркивает наличие взаимосвязи между формой целой структуры и формами, составляющими ее части. Вспомните приводившиеся выше примеры: береговую линию и дерево с ветками. Автомодельные структуры присутствуют повсюду в Природе, и в частности в человеческом теле. Например, в легких структура ветвления главных бронхов повторяется во второстепенных бронхах, а затем и в совсем маленьких бронхиолах. Артериальные и венозные сосуды кровеносной системы и сеть периферийной нервной системы тоже состоят из повторяющихся автомодельных ветвящихся структур.


Поскольку фрактальная геометрия действительно представляет собой основной дизайнерский инструмент Природы, в биосфере на всех уровнях организации присутствуют вложенные друг в друга автомодельные структуры.

Следовательно, наблюдая и осмысливая какую-либо форму на все более высоких или все более низких уровнях ее структуры, мы можем использовать фракталы в качестве путевой карты. Фракталы могут дать нам представление об организации каждого нового уровня структуры. Что касается биосферы, следует предположить, что очертания человеческой эволюции изначально содержат автомодельные структуры, характеризующие эволюцию на всех других уровнях Природы.

Современник Дарвина, знаменитый эмбриолог Эрнст Геккель, еще в 1868 году, сам того не осознавая, впервые описал автомодельный фрактальный процесс в эволюции. Геккель опубликовал ставшую ныне знаменитой последовательность рисунков, где эмбрионы различных животных на разных стадиях своего развития сравниваются с эмбрионом человека. Он отметил, что эмбрионы всех позвоночных проходят через последовательный ряд аналогичных структурных изменений. Ученый предположил, что на ранних стадиях развития организмы фактически воспроизводят эволюционный путь своего вида.

Теория Геккеля кратко формулируется так: онтогенез повторяет филогенез. Переводим: «индивидуальное развитие воспроизводит развитие вида». К сожалению, представляя свои идеи публике, Геккель несколько переусердствовал с их популяризацией и значительно исказил изображения ранних стадий эмбрионального развития, чтобы они больше походили друг на друга, чем это есть на самом деле.

Однако, несмотря на эти подтасовки, эмбрион человека действительно проходит целый ряд преобразований, прежде чем обретает человеческий облик. И при этом он последовательно принимает целый ряд автомодельных форм, структурно напоминающих эмбрионы различных животных, представляющих более ранние стадии эволюции позвоночных.

 

Глава 11. Фрактальная эволюция 369

 

Эмбрион человека в ходе своего развития вначале напоминает эмбрион рыбы, затем эмбрион амфибии. Далее он приобретает форму рептилии, потом — млекопитающего и, наконец, человека. Повторяя на стадии эмбрионального развития различные этапы эволюции своих предков в биосфере, человек тем самым являет собой динамический пример фрактального автомодельного явления.

 

Декодирование эволюции

Действительно ли мир описывается фрактальной геометрией? То, что введение простых математических уравнений во фрактальную компьютерную программу приводит к моделированию реалистичных ландшафтов и биологических форм, служит свидетельством, но не доказательством фрактальности природы как таковой. Может быть, наличие автомодельных структур повсюду в биосфере — не более чем случайность?

Есть убедительный аргумент в подтверждение того, что наблюдаемые параллели между фрактальной геометрией и естественными природными структурами не случайны и что Природа представляет собой чувствительную динамическую систему, основанную на итеративных процессах и описываемую математикой хаоса.

Некогда Ламарк охарактеризовал эволюцию как трансформацию — линейный процесс, начинающийся с примитивных организмов и поднимающийся к состоянию, которое этот ученый назвал «совершенством». В своей модели Ламарк представлял себе эволюцию как восхождение по ступеням. Дарвинисты тоже признавали восходящую направленность эволюции, но у них этот процесс ассоциировался с деревом. Они отмечали, что большинство случайных вариаций, дающих начало новым организмам, можно уподобить боковым ответвлениям дерева, ибо они не обязательно способствуют вертикальному восхождению вида.

Принимая во внимание современные исследования, мы должны предположить, что эволюггионный путь более всего напоминает распускающуюся хризантему. Жизнь эволюционирует во всех направлениях, движимая внутренним стремлением населить все доступные ей ниши окружающей среды. В процессе эволюции развились виды, способные жить даже в толще ледников, в кратерах подводных вулканов и на километровой глубине под землей. Если мы принимаем модель хризантемы, тогда вопрос «Куда движется эволюция?» утрачивает смысл. Она движется во всех направлениях одновременно. Чтобы отслеживать курс эволюции, нужно вначале решить, какой параметр мы будем использовать в качестве критерия эволюционных успехов. Например, путь эволюции морских организмов отличается от пути эволюции на земле или в воздухе. Люди достигли не очень больших высот в эволюционной иерархии подводных, или яйцекладущих, или летающих животных. Так в чем же преуспели люди с точки зрения эволюции?

В качестве одновременно наблюдателей и участников эволюции мы избрали лепесток цветка хризантемы, представляющий черту, которая, как мы думаем, отличает нас от низших видов. И эта черта — осознание. На эту же черту обратил внимание и Ламарк, когда предложил использовать в качестве критерия эволюционного продвижения уровень развития нервной системы. Дарвинисты тоже изображают свое дерево эволюции как восходящую иерархию развития нервной системы.

К сожалению, как мы отмечали в главе 1 «Поверить — значит увидеть» и о чем более подробно говорилось в книге «Биология веры», в официальной науке бытует искаженное понимание эволюции. Это обусловлено ложными представлениями о том, что нервная система клетки якобы представлена ядром и содержащимися в нем генами. Вследствие такого заблуждения нынешняя биологическая наука занимается совершенно бестолковым делом: сравнивает геномы организмов в качестве показателя эволюционного развития.

Как уже говорилось выше, на самом деле роль мозга в клетке выполняет мембрана. В структуру клеточной мембраны встроены протеины-рецепторы и протеины, нервные окончания которых можно рассматривать как единицы восприятия. Таким образом, чтобы количественно оценить уровень осознания организма, нужно подсчитать его воспринимающие протеины.

В силу физических ограничений воспринимающие протеины могут сформировать в мембране всего лишь один слой. Отсюда следует, что рост численности воспринимающих протеинов в организме напрямую связан с увеличением совокупной площади клеточных мембран. Иными словами, для того чтобы увеличить свой уровень осознания, организму необходимо наращивать мембранную мощь.

Проще говоря, из всех этих рассуждений следует, что математики могут вычислить эволюционное продвижение организма, рассчитав совокупную площадь его клеточных мембран. А как это сделать? Как утверждает Уильям Олмэн, автор статьи «Математика человеческой жизни», опубликованной в журнале U.S. News & World Report, «исследования в сфере фрактальной математики показывают, что повторяющиеся ветвящиеся фрактальные структуры являют собой наилучший способ разместить наибольшую по площади поверхность в трехмерном пространстве». Для моделирования эволюции просто необходимо использовать фрактальную геометрию, ибо без нее никакой эволюции просто не было бы. Следовательно, существование автомодельных структур во Вселенной — не случайность, не совпадение, а проявление математики самой эволюции.

Удивительно красивые фрактальные узоры, генерируемые компьютерами, должны напомнить нам, что, вопреки царящей ныне в мире тревоге и кажущемуся хаосу, в Природе есть порядок. И поскольку этот порядок изначально состоит из автомодельных фрактальных структур, под Солнцем воистину не может быть ничего нового.

Эзотерический мир фрактальной геометрии дает нам математическую модель, которая указывает: лежащие в основе теории Дарвина представления о произвольности, случайности и ненаправленности эволюционных процессов безнадежно устарели. Мы полагаем, что упорные попытки отстоять эти устаревшие идеи создают серьезную угрозу для выживания человечества. Поэтому дарвинизм должен как можно быстрее отправиться туда же, где сейчас находятся докоперниковские представления о геоцентрической Вселенной.

 

Целенаправленное нарушение равновесия

Тот факт, что биосфера по своей природе фрактальна, уже не вызывает сомнений. Теперь важно ответить на другой вопрос: «Случайно ли биологические организмы приобрели свои фрактальные свойства или в этом есть некий особый смысл?» Согласно официально принятой в науке теории Дарвина, эволюцией движут произвольные мутации и Природа приобрела свою нынешнюю структуру совершенно случайно. Однако после того, как был открыт механизм соматической гипермутации, стало очевидно, что существует процесс, позволяющий клеткам целенаправленно осуществлять мутации в собственных генах и тем самым активно участвовать в эволюции.

Исследования Кэйрнса и других специалистов в области эволюции бактерий, о которых мы говорили выше, демонстрируют, что живым системам свойственна способность пробуждать в себе эволюционные изменения для обеспечения собственного выживания в динамически меняющейся среде. Эти новооткрытые геноизменяющие механизмы носят разные названия: направленная мутация, адаптивная мутация или благоприятная мутация. Но, какой бы термин мы ни использовали, речь идет об одном и том же: эволюционные изменения являются целенаправленными, а не случайными.

В основе эволюции лежит определенный план, который предстает перед нами в форме фрактальной природной среды. В эволюции отмечаются периоды массового вымирания живых существ, которые, очевидно, были обусловлены потрясениями в среде. Эти переломные моменты, называемые периодами нарушения равновесия, то и дело приходят на смену периодам эволюционного застоя. Подвергаясь давлению таких нарушений равновесия в среде, жизнь, благодаря механизмам адаптивных мутаций, ухитряется выживать, эволюционировать и снова приходить к расцвету. Способность осуществлять целенаправленную мутацию собственных генов обеспечила организмам возможность в сложных условиях активно изменять свою генетику, чтобы выжить путем обретения единства и гармонии с новыми условиями среды.

Ранее массовое вымирание животных происходило периодами, вследствие нарушающих эволюционное равновесие природных катастроф. Таких периодов было пять. В результате одни жизненные формы внезапно исчезали, но затем им на смену приходило изумительное разнообразие других форм. Эта модель периодически нарушаемого равновесия ставит под сомнение еще одно фундаментальное допущение теории Дарвина: веру в то, что эволюционный переход от одного вида к другому осуществляется в результате последовательности бесконечно малых трансформаций на протяжении целых эпох.


Дата добавления: 2018-02-15; просмотров: 432; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!