СТРУКТУРНЫЕ СВОЙСТВА МЕХАНИЗМОВ



Изучение механизмов металорежущих станков

Методические указания

к лабораторной работе по курсу "Металорежущие станки"

для студентов специальности 1201- "Технология машиностроения"

 

 

Тверь 2001

 

 

В методических указаниях к лабораторной работе "Изучение механизмов металлорежущих станков" изложены основные понятия и положения по систематике и функциональному назначению механизмов, входящих в кинематические цепи станков.

Лабораторная работа предназначена для изучения курса "Металлорежущие станки". Методические указания (второе издание) рекомендованы к применению на заседании кафедры "Металлорежущие станки и инструменты" (протокол №2 от 02.11.2000)

 

Автор: Клюйко Э.В.

 

СОДЕРЖАНИЕ

1. Стр.
2. 1. Цель работы............................................................................................ 3
3. 2. Порядок проведения работы................................................................. 3
4. 3. Назначение и состав механиз­мов......................................................... 3
5. 4. Структурные свойства механизмов.................................................... 8
6. 5. Функциональные свойства механизмов ............................................. 11
7. 6. Примеры анализа механизмов.............................................................. 13
8. 7. Индивидуальные задания по анализу механизмов............................. 17
9. 8. Контрольные вопросы........................................................................... 18
9. Библиографический список ................................................................. 18
10. Приложение ............................................... ......................................... 19

 

ЦЕЛЬ РАБОТЫ

 

1. Изучить основные свойства передаточных механизмов станков.

2. Приобрести определенные навыки в анализе структурных и функциональных свойств механизмов станков.

 

 

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Ознакомиться с основными свойствими передаточные меха­низмов станков,

2. Изучить методику анализа структурных и функциональных свойств механизмов станков.

3. По индивидуальному заданию (альбом, макеты механизмов и Приложение на стр 20…22) проанализировать основные свойства и характеристики станочных механизмов.

 

 

НАЗНАЧЕНИЕ И СОСТАВ МЕХАНИЗМОВ

В металлорежущих станках все многообразие механизмов, пред­назначенных для создания определенных движений, подразделяют на двигательные (приводные), передаточные и исполнительные (формообразующие). Наиболее многочисленные из них передаточные [1,4]. Отличаются они друг от друга по назначению (реверсирующие, суммирующие, корректирующие и др.), по конструкции (шарнирно-рычажные, кулачковые, зубчатые, винтовые и др.) по исполнению опор и зацеплении (передачи скольжения, передачи качения и т.д.).

Механизмы представляют собой (рис. 1) подвижные соединения несколь­ких тел, предназначенных для преобразования движений. Имеется в виду как замена одного вида движения на другое (рис. 1а, 1в), так и передача движения с количественным изменением его параметров (рис. 1г). В качестве основных характеристик движения при настройке механизмов станков, используют пять параметров: траекторию, путь (угловой или линейный), скорость, направление и положение входного или выходного звеньев [2,4].

Передаточные механизмы состоят из звеньев, образующих на стыках между собой кинематические пары (j;k). Звено j или k - это одно ли несколько деталей, жестко (без относительных смещений) связанных между собой. Например, на рис. 1г звено 3 образуют вал и закрепленные на нем шестерни z4 и z5. Звенья могут быть твердыми и деформируемыми, подвижными и неподвижными, ведущими и ведомыми. Основные типы подвижных звеньев, применяемые в станках приведены в таблице 1 и в альбоме ([3], стр.63). Кроме концевых подвижных звеньев в механизмах могут быть промежуточные подвижные звенья и всегда есть одно неподвижное звено, называемое основанием или стойкой. Поэтому можно сказать, что механизм - это многозвенная подвижная передаточная система с одним неподвижным звеном. На рис. 1а показан четырехзвенный (с учетом стойки) механизм привода ползуна 3 долбежного станка. Для компенсации перекосов в шарнирах и смягчения ударной нагрузки в паре (1;2) введена избыточная подвижность (v12=2 вместо v12=1). Для придания повышенной жесткости одинаковым рычагам 1 и 3 (рис 1б) к ним в пятизвенном механизме зажимного приспособления присоединен дополнительный шатун 4. На рис 1б показан простейший трехзвенный пространственный механизм с дисковым кулачком 1 и качающимся толкателем 2, применяемый в приводе подачи шпиндельной бабки токарного автомата (кулачок вращается параллельно плоскости yz , а толкатель качается в плоскости ху). Сложный восьмизвенный двухпоточный механизм привода стола продольно-фрезерного станка (рис. 1г) позволяет уменьшить зазоры в косозубых зубчатых передачах и распределить силовую нагрузку между приводными валами 4 и 6 в соответствии с их жесткостью.    

 

 

Рис.1. Примеры передаточных механизмов:

а) – кривошипно-ползунный механизм с избыточной подвижностью в паре (1;2);

б) – шарнирно рычажный механизм с избыточным звеном 4;

в) – кулачково-рычажный пространственный механизм;

г) – зубчатый замкнутый механизм привода стола  

 

 

Таблица 1

Основные типы звеньев в механизмах

Тип звена Назначение Условное обозначение
1 Стойка (основание) неподвижное звено  
2   Кривошип вращательное звено    
3   Коромысло (рычаг) качательное звено    
4 Кулачок вращательное или по­ступательное звено с плоским или пространственным криволинейным профилем    
5 Шестерня вращательное звено в виде колеса с зубчатым венцом    
6 Рейка поступательное звено в виде стержня с зубчатой нарезкой    
7 Шатун Звено, совершающее плоское или пространственное движение    
8   Ползун (толкатель) Звено, совершающее поступательное движение  
9 Кулиса Звено, совершающее любое движение и не­сущее направляющие плоскости для другого звена    
10 Винт (ходовой винт) Звено в виде вала с винтовой на­резкой для создания вращательного поступательного или винтового движения  
11 Гайка а– простая б– маточная в– шариковая звено, охватывающее в зацеплении ходовой винт для передачи движения     а      б     в

 

Кинематическая пара (j;k) представляет собой подвижное соединение двух звеньев j и k. Подвижное соединение может быть выполнено по поверхностям (в низших парах) и по линиям или точкам (в высших парах). Подвижный контакт в парах может поддерживаться геометрическим, силовым или кинематическим замыканием. В первом случае используют ограничение (охват) одних поверхностей другими (рис. 1а, направляющая О для ползуна 3), во втором – применяют пружины (рис 1в), груз или гидроприжим, в третьем – используют дополнительную кинематическую цепь механизмов (рис. 1г). Конструктивно кинематическая пара обычно представляет собой подвижный контакт звеньевв подшипниковых опорах или зацепление этих звеьев. Основные типы пар приведены в таблице 2 (арабскими цифрами в таблице обозначены звенья.)

Основной характеристикой кинематической пары является ее подвижность v jk, т.е число относительных смещений (линейных или угловых) между звеньями j и k.

Таким образом, передаточный механизм - это совокупность нескольких звеньев, связанных в кинематические пары и предназначенных для преобразования движений одних звеньев (входных) в движения других звеньев (выходных). В таблице 3 приведены основные типы передаточных механизмов общего назначения, применяемые в станках.

Наряду с обычными механическими передачами в металлорежущих станках применяют технологические механизмы, которые являются основными исполнительными механизмами станков и отличаются от передаточных механизмов наличием технологической пары, представляющей собой подвижный контакт инструмента относительно обрабатываемого изделия (табл.2). В технологической паре вместо скольжения или качения создается срезание материала и формообразование изделия. В соответствии с способом обработки технологические пары называют токарными, фрезерными, шлифовальными парами и т.д. На рис.2. приведен пример механизма шлифования с одной шлифовальной парой (2;5)

 

 

Рис.2. Механизм врезного шлифования кулачков распредвалов: 1-качающаяся люлька, несущая на себе шпиндель 2 с изделием Д и копиром К;

3-копировальный ролик, установленный на

подшипниках О1 и контактирующий с копиром;

4-шлифкруг на шпиндельных опорах О2 .

Пружина П создает силовой контакт между

копиром и роликом. Ведущим является вращение

шпинделя 2 с изделием и копиром.

 

Таблица 2

Типы кинематических пар в передаточных механизмах (по ГОСТ 2.770-68 и по рекомендациям ICO ТК/10 ПК4

Наименование Условное изображение Подвижность, v jk, Замыкание Наименование Условное изображение Подвижность, v jk, Замыкание
1 Ползунная   1 Геометрическое 6 Сферическая а) обычная б) с пальцем     3   2 геометри-ческое
2 Вращательная   1 -“- 7 Зубчатая а) плоская б) пространственная     2   4 или 5   силовое и геометрическое
3 Винтовая а) скольжения б) качения   1 -“-

8

Кулачковая
а) плоская



б) пространственная

 

 

2

 

 

4 или 5

 

 

силовое и геометрическое

4

Цилиндри-ческая

 

2

-“-

9

Технологическая (токарная, фрезерная, шлифовальная и т.д.)
а) с линейным формообразующим контактом

б) с точечным формообразующим контактом

 

 

1

 

2

силовое

5 Плоская а) обычная   б) с пальцем   3   2   Силовое     Силовое и геометрическое

 

СТРУКТУРНЫЕ СВОЙСТВА МЕХАНИЗМОВ

4.1. Сложность N механизма. В металлорежущих станках сложные подвижные механические системы, передающие движе­ния от входного звена к выходному (шпиндель, суппорт и т.д.) и образующие последовательные связи между этими звеньями, называют кинематической цепью механизмов Еще более сложными яв­ляются так называемые кинематические группы [2], которые предназначены для создания сложных исполнительных движений и состоящие из нескольких кинематических цепей. Любые кинематические цепи механизмов или их участки, образующие сложные механизмы, могут быть расчленены на простые.

Простой механизм (или передача)- это такой, в котором число звеньев (с учетом неподвижного) равно числу кинематические пар, то есть p = n + 1, где р – число кинематических пар, n – число подвижных звеньев. Графическое изображение основных типов простых механизмов стандартизовано, (см. [3], стр. 65). Каждое звено в простом механизме образует подвижное соединение с двумя другими звеньями. Сложные механизмы содержат несколько простых; в них есть звенья, подвижно связанные более чем с двумя другими звеньями (рис. 3 и 4).

    Число N простых механизмов в сложном равно

 

N = p – n                                               (1)

 

    Если вычисление по формуле (1) дает N = 1, то механизм простой; если N > 1, то механизм сложный; при N < 1 механизм вырождается в жесткую ферму. В числе р кинематических пар в формуле (1) не учитывают избыточные (пассивные) пары, вводимые в механизмы в виде дополнительных опор и зацеплений. Например, в дифференциале(рис.5), такой опорой является пара (2;4) между водилом 2 и ступицей 4 шестерен z4 и z8.

    Таким образом, степень сложности механизма определяется в нем числом простых передач.

4.2. Размерность R механизма. Она определяется числом измерений движения звеньев механизма и равна числу независимых уравнений, связывающих параметры движения (положения или скорости или ускорения) всех звеньев механизма. Например, в шарнирном четырехзвеннике А (рис.3) для четырех переменных параметров положения (углы поворота j4, j5, j6, j7) имеем три независимых уравнения связи, то есть R=3:

        

(2)
1)  -проекция на ось х

2)  -проекция на ось у                              

3)  - сумма внутренних углов 4-звенника


Из примера следует, что размерность простого механизма на единицу меньше числа vå параметров его положения, то есть в большинстве механизмов R = (vå – 1). Это обстоятельство позволяет определить R для существующего (известного) механизма без составления вышеуказанных уравнений. Например, для передачи «винт-гайка», R=2, так как параметров положения три: угловое положение винта, линейное положение гайки, а также относительное смещение в зацеплении витков винта и гайки. Для неизвестного (нового) механизма система R вышеуказанных уравнений (2) определяет условия существования механизма и ограничивает число измерений пространства, в котором происходит движение. В общем случае пространство движений – шестимерно. Поэтому размерность R простого механизма определяется зависимостью

 

R=6 – cг                                                                               (3)

 

где cг – число общих геометрических связей, ограничивающих пространство движений звеньев механизма. Например, для передачи «винт-гайка» cг=4 (допускается только две подвижности в механизме: вращение вокруг оси винта и перемещение вдоль этой оси), а для кулачкового механизма (рис. 2 в) величина cг=2 (невозможно вращение одного из звеньев вокруг оси y и перемещение перпендикулярно плоскости xy). Так как движения звеньев механизмов не могут иметь более 6-и измерений, то все простые механизмы делят на:

1) одномерные, R=1 (приводные электро-, гидро- и пневмодвигатели);

2) двухмерные, R=2 (например, трехзвенные клиновые, винтовые и фрикционные механизмы);

3) трехмерные, R=3 (все плоские шарнирно-рычажные, кулачковые, зубчатые и поводковые механизмы, а также сферические и зубчато-рычажные механизмы);

4) четырехмерные, R=4 (например пространственные рычажно-винтовые и кулачковые механизмы;

5) пятимерные, R=5 (например пространственные шарнирно-рычажные, кулачковые и зубчато-рычажные механизмы);

6) шестимерные, R=6 (например пространственные шарнирно-рычажные, кулачковые и зубчато-рычажные механизмы)

 

4.3. Подвижность W механизма. Она определяется числом степеней свободы движений в механизме, т.е. числом независимых движений на разных входных звеньях, передающих их на одно выходное звено механизма. В соответствии с этим механизмы могут быть одноподвижными (подавляющее большинство) и многоподвижными. Примерами последних являются разнообразные суммирующие механизмы станков ([3], стр.79) и промышленные роботы. Подвижность всего механизма зависит от подвижностей  отдельных кинематических пар (j;k), определяемых числом возможных перемещений одного звена пары относительно другого. Могут быть одно-, двух-,…, пятиподвижные кинематические пары (табл.2).

    В сложном передаточном механизме общая подвижность определяется следующим выражением:

 

                                           (4)

 

где   - суммарная подвижность всех р кинематических пар механизма, ;

Rå - сумма размерностей N простых механизмов, входящих в состав сложного, Rå= R1+ R2+…+ RN;

vп – число местных избыточных (пассивных) подвижностей в кинематических парах. Например, лишняя подвижность в паре Р12 (рис.1а) или «лишнее» вращение ролика 2 (рис.3) на рычажном толкателе 3, не влияют на положение и движение других звеньев механизма. Избыточные подвижности применяют для уменьшения трения, для компенсации перекосов и других погрешностей с целью повышения работоспособности механизмов.

ск- число жестких кинематических связей в сложном механизме. К числу кинематических связей относятся как отдельные дополнительные звенья (рычаги, кулачки, шестерни и т.п.), так и цепи дополнительных механизмов, дублирующих или дополняющих работу основных передач. Указанные кинематические связи образуют замкнутые механические контуры (замкнутые механизмы) и способствуют повышению точности, жесткости и других свойств механизмов. Примерами простейших кинематических связей являются дополнительные шатун 4 (рис.1б) и сателлит 7 (рис.5). Пример более сложной кинематической связи показан на рис.1г. Здесь от двигателя М с помощью зубчатой пары z1/z2 на вал 2 передается вращение, которое затем разделяется на два потока передачами z3/z4 , z5/z6 и z7/z8 , z9/z10, замыкаясь с помощью шестерен z11 и z12 на зубчатой рейке, закрепленной на столе станка. Усилие Q гидроцилиндра или мощной пружины 3 на вал2, благодаря косозубым зацеплениям шестерен, создает дополнительный натяг между боковыми поверхностями зубьев колес z11, z12 с рейкой. В этом механизме n=7, p=14, N=7, ск=1 (один замкнутый контур), vп=0 и W = ( 14 + 7 ) + 1 – 7 × 3 = 1 (все простые механизмы – трехмерные, Rj =3).

    Подвижность простого механизма в соответствии с (4) равна:

 

W = vS - Rj - vп                                          (5)

 

    Здесь ск=0, т.к. введение кинематических связей в простой механизм делает его сложным. Например, присоединение дополнительного шатуна 4 (рис. 1б) в шарнирный четырехзвенник добавляет в него две кинематические пары, поэтому N = 6 – 4 = 2 (два подобных четырехзвенника).

 


Дата добавления: 2021-04-24; просмотров: 70; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!