Преобразования, проведение которых может привести к потере корней



Некоторые преобразования из списка основных преобразований при определенных условиях могут привести к потере корней. Например, при делении обеих частей уравнения x·(x−2)=x−2 на одно и то же выражение x−2 происходит потеря корня. Действительно, в результате проведения такого преобразования получается уравнение x=1 с единственным корнем, которым является число 1, а исходное уравнение имеет два корня 1 и 2.

Нужно отчетливо понимать, когда происходит потеря корней в результате проведения преобразований, чтобы при решении уравнений не терять корни. Давайте разбираться с этим.

В результате проведения указанных преобразований потеря корней может произойти тогда и только тогда, когда ОДЗ для преобразованного уравнения оказывается уже, чем ОДЗ для исходного уравнения.

Для доказательства этого утверждения нужно обосновать два момента. Во-первых, нужно доказать, что если в результате проведения указанных преобразований уравнения сужается ОДЗ, то может произойти потеря корней. И, во-вторых, нужно обосновать, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения.

Если ОДЗ для уравнения, полученного в результате преобразования, уже, чем ОДЗ для исходного уравнения, то, естественно, ни один корень исходного уравнения, находящийся вне ОДЗ для полученного уравнения, не может быть корнем уравнения, полученного в результате проведения преобразования. Значит, все эти корни будут потеряны при переходе от исходного уравнения к уравнению, ОДЗ для которого уже, чем ОДЗ для исходного уравнения.

Теперь обратно. Докажем, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения. Это можно сделать методом от противного. Предположение о том, что в результате проведения указанных преобразований происходит потеря корней, но не сужается ОДЗ, противоречит утверждениям, доказанным в предыдущих пунктах. Действительно, из этих утверждений следует, что если при проведении указанных преобразований не сужается ОДЗ, то получаются или равносильные уравнения или уравнения-следствия, значит, не может происходить потеря корней.

Итак, причиной возможной потери корней при проведении основных преобразований уравнений выступает сужение ОДЗ. Понятно, что, решая уравнения, мы не должны терять корни. Здесь, естественно, возникает вопрос: «Что же делать, чтобы не терять корни при преобразовании уравнений»? Ответим на него в следующем пункте. А сейчас давайте пробежимся по списку основных преобразований уравнений, чтобы более детально посмотреть, какие преобразования могут привести к потере корней.

· Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.

Если заменить выражение в левой или правой части уравнения тождественно равным выражением, ОДЗ для которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ, и из-за этого могут быть потеряны корни. Наиболее часто к сужению ОДЗ и, как следствие, к возможной потере корней приводят замены выражений в левой или правой части уравнений тождественно равными им выражениями, проводящиеся на базе некоторых свойств корней, степеней, логарифмов и некоторых тригонометрических формул. Например, замена выражения в левой части уравнения тождественно равным ей выражением , сужает ОДЗ и приводит к потере корня −16. Аналогично, замена выражения в левой части уравнения тождественно равным ему выражением приводит к уравнению , ОДЗ для которого уже, чем ОДЗ для исходного уравнения, что влечет потерю корня −3.

· Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.

Это преобразование равносильное, поэтому, при его проведении не могут быть потеряны корни.

· Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.

Если прибавить или вычесть выражение, ОДЗ которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ и, как следствие, к возможной потере корней. Это стоит иметь в виду. Но здесь стоит отметить, что на практике обычно приходится прибегать к прибавлению или вычитанию выражений, которые присутствуют в записи исходного уравнения, что не приводит к изменению ОДЗ и не влечет потери корней.

· Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.

Это преобразование уравнения равносильное, поэтому, в результате его проведения корни не теряются.

· Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.

Это преобразование тоже равносильное, и из-за него потеря корней не происходит.

· Умножение или деление обеих частей уравнения на одно и то же выражение.

Это преобразование может приводить к сужению ОДЗ в двух случаях: когда ОДЗ для выражения, на которое проводится умножение или деление, уже, чем ОДЗ для исходного уравнения, и когда проводится деление на выражение, обращающееся в нуль на ОДЗ для исходного уравнения. Заметим, что на практике обычно не приходится прибегать к умножению и делению обеих частей уравнения на выражение с более узкой ОДЗ. А вот с делением на выражение, обращающееся на ОДЗ для исходного уравнения в нуль, иметь дело приходиться. Существует метод, позволяющий справляться с потерей корней при таком делении, о нем мы расскажем в следующем пункте этой статьи.

К началу страницы

Как избежать потери корней?

Если для преобразования уравнений использовать только преобразования из списка основных преобразований и при этом не допускать сужения ОДЗ, то потери корней не произойдет.

Означает ли это, что нельзя проводить какие-либо другие преобразования уравнений? Нет, не означает. Если придумать какое-нибудь еще преобразование уравнения и полностью описать его, то есть, указать, когда оно приводит к равносильным уравнениям, когда – к уравнениям-следствиям, и когда может приводить к потере корней, то его вполне можно будет взять на вооружение.

Стоит ли полностью отказываться от преобразований, сужающих ОДЗ? Не стоит этого делать. В своем арсенале не помешает оставить преобразования, при которых из ОДЗ для исходного уравнения выпадает конечное количество чисел. Почему от таких преобразований не стоит отказываться? Потому что существует метод, позволяющий в таких случаях избежать потери корней. Он состоит в отдельной проверке чисел, выпадающих из ОДЗ, на предмет того, есть ли среди них корни исходного уравнения. Проверить это можно подстановкой этих чисел в исходное уравнение. Те из них, которые при подстановке дают верное числовое равенство, являются корнями исходного уравнения. Их нужно включить в ответ. После такой проверки можно спокойно проводить задуманное преобразование без боязни потерять корни.

Типичным преобразованием, при котором ОДЗ для уравнения сужается на несколько чисел, является деление обеих частей уравнения на одно и то же выражение, которое обращается в нуль в нескольких точках из ОДЗ для исходного уравнения. Такое преобразование лежит в основе метода решения возвратных уравнений. Но оно используется и при решении уравнений других видов. Приведем пример.

Решение уравнения можно провести методом введения новой переменной. Чтобы ввести новую переменную, надо разделить обе части уравнения на 1+x. Но при таком делении может произойти потеря корня, так как хотя ОДЗ для выражения 1+x не уже, чем ОДЗ для исходного уравнения, но выражение 1+x обращается в нуль при x=−1, а это число принадлежит ОДЗ для исходного уравнения. Значит, может произойти потеря корня −1. Чтобы исключить потери корня, следует отдельно проверить, является ли −1 корнем исходного уравнения. Для этого можно подставить −1 в исходное уравнение и посмотреть, какое равенство при этом получается. В нашем случае подстановка дает равенство , что то же самое 4=0. Это равенство неверное, значит −1 не является корнем исходного уравнения. После такой проверки можно осуществлять задуманное деление обеих частей уравнения на 1+x, не опасаясь за то, что может произойти потеря корней.

В заключение этого пункта еще раз обратимся к уравнениям из предыдущего пункта и . Преобразование этих уравнений на базе тождеств и приводит к сужение ОДЗ, а это влечет потерю корней. В этом пункте мы сказали, что для того, чтобы не терять корни, нужно отказаться от преобразований, сужающих ОДЗ. Значит, от указанных преобразований нужно отказаться. А как же быть? Можно провести преобразования не на базе тождеств и , из-за которых сужается ОДЗ, а на базе тождеств и . В результате перехода от исходных уравнений и к уравнениям и не происходит сужения ОДЗ, значит, не будут потеряны корни.

Здесь же особо отметим, что при замене выражений тождественно равными выражениями нужно тщательно следить за тем, чтобы выражения были именно тождественно равными. Например, в уравнении нельзя заменить выражение x+3 выражением с целью упрощения вида левой части до , так как выражения x+3 и не являются тождественно равными, ведь их значения не совпадают при x+3<0. В нашем примере такое преобразование приводит к потере корня. А в общем случае замена выражения не тождественно равным выражением приводит к уравнению, которое не позволяет получить решение исходного уравнения.

К началу страницы


Дата добавления: 2021-07-19; просмотров: 872; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!