Флуоресцентная гибридизация in situ (FISH)



Это один из самых современных методов диагностики хромосомных аномалий. Он основан на использовании ДНК-проб, меченных флуоресцентной меткой.

ДНК-пробы представляют собой специально синтезированные фрагменты ДНК, последовательность которых комплементарна последовательности ДНК исследуемых аберрантных хромосом.

Таким образом, ДНК-пробы различаются по составу: для определения разных хромосомных аномалий используются разные, специфические ДНК-пробы. ДНК-пробы также различаются по размеру: одни могут быть направлены к целой хромосоме, другие – к конкретному локусу.

В ходе процесса гибридизации при наличии в исследуемом образце аберрантных хромосом происходит их связывание с ДНК-пробой, которое при исследовании с помощью флуоресцентного микроскопа определяется как флуоресцентный сигнал (положительный результат FISH-теста). При отсутствии аберрантных хромосом несвязанные ДНК-пробы в ходе реакции "отмываются", что при исследовании с помощью флуоресцентного микроскопа определяется как отсутствие флуоресцентного сигнала (отрицательный результат FISH-теста). Метод позволяет оценить не только наличие флуоресцентного сигнала, но и его интенсивность и локализацию. Таким образом, FISH-тест – это не только качественный, но и количественный метод.

FISH-тест обладает рядом преимуществ по сравнению с другими методами цитогенетики. В первую очередь, исследование FISH может быть применено как к метафазным, так и к интерфазным ядрам, то есть к неделящимся клеткам. Это основное преимущество FISH по сравнению с классическими способами кариотипирования (например, окрашиванием хромосом по Романовскому-Гимзе), которые применяются только к метафазным ядрам. Благодаря этому исследование FISH является более точным методом для определения хромосомных аномалий в тканях с низкой пролиферативной активностью, в том числе в солидных опухолях.

Другим преимуществом FISH является его способность определять микроделеции (потери маленьких участков хромосом), которые не выявляются с помощью классического кариотипирования или ПЦР. Это имеет особое значение при подозрении на синдром Ди Джорджи и велокардиофациальный синдром.

FISH-тест широко используется в дифференциальной диагностике злокачественных заболеваний, в первую очередь в онкогематологии. Хромосомные аномалии в сочетании с клинической картиной и данными иммуногистохимического исследования являются основой классификации, определения тактики лечения и прогноза лимфо- и миелопролиферативнх заболеваний. Классическими примерами являются хронический миелолейкоз – t (9;22), острый промиелоцитарный лейкоз – t (15;17), хронический лимфолейкоз – трисомия 12 и другие. Что касается солидных опухолей, наиболее часто FISH-исследование применяется при диагностике рака молочной железы, мочевого пузыря, толстой кишки, нейробластомы, ретинобластомы и других.

Исследование FISH также может быть использовано в пренатальной и преимплантационной диагностике.

FISH-тест часто проводят в сочетании с другими методами молекулярной и цитогенетической диагностики. Результат этого исследования оценивают в комплексе с результатами дополнительных лабораторных и инструментальных данных.

Проточная цитометрия

Метод проточной цитометрии используется для сортировки хромосом человека и изучения отдельных популяций клеток в препарате, состоящем из клеток разных типов. Он предполагает использование флуоресцентного красителя для специфической маркировки интересующей популяции клеток. Отдельные клетки помещаются в проточный цитометр и подвергаются воздействию дифрагированного света для определения формы размера и клеток, после чего их можно исследовать по одной. Данный цитогенетический метод исследования предполагает, что флуоресцентно меченые клетки также можно отсортировать в отдельные пробирки в зависимости от их размера и интенсивности их флуоресцентного сигнала с помощью дифракционных пластин в процессе, называемом сортировкой клеток с активацией флуоресценции (FACS).

Кариотипирование

Изолирование отдельных хромосом с помощью проточной цитометрии, а также знание последовательности генома человека позволили разработать 24-цветные пробы для обозначения каждой хромосомы человека отдельным цветом. Такие пробы создаются путем маркировки фрагментов ДНК, покрывающих длину каждой отдельной хромосомы, ярко окрашенным флуоресцентным красителем. Затем меченые ДНК-пробы объединяют и используют в экспериментах по гибридизации с метафазными хромосомными распределениями. Это позволяет маркировать каждую отдельную хромосому определенным флуоресцентным цветом по всей ее длине. Цитогенетическое исследование предполагает, что в соматической клетке отцовская и материнская копии каждой хромосомы будут помечены одним и тем же цветом. Такой подход позволяет одновременно отслеживать все хромосомы человека, он получил название спектрального кариотипирования.

Кариотип - это совокупность признаков полного набора хромосом соматических клеток организма на стадии метафазы (III фаза деления клетки) – их количество, размер, форма, особенности строения.

В кариотипе человека — 46 хромосом. 44 (или 22 пары) – это аутосомы, которые присутствуют в соматических клетках и являются одинаковыми у мужчин и у женщин. И 2 – это половые хромосомы, которые определяют пол человека. У женщины половые хромосомы одного типа (ХХ), у мужчины – разных (ХY). Соответственно, женский кариотип – 46, ХХ; мужской кариотип – 46, ХY. Хромосомный набор содержит всю генетическую информацию о своем обладателе. Он остается неизменным на протяжении всей жизни человека. Кариотип будущего ребенка несет в себе половину генетической информации от отца, и половину – от матери.


Дата добавления: 2021-03-18; просмотров: 130; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!