Алгоритм нахождения экстремумов функции двух переменных



Дана функция двух переменных .

Шаг 1. Находим частные производные 1 порядка и .

Шаг 2. Приравниваем  частные производные 1 порядка и  нулю (необходимый признак существования экстремума):

Решения этой системы уравнений являются точками возможного экстремума - критическими точками.

Шаг 3. Пусть является критической точкой, найденной на шаге 2. Чтобы убедиться, что в ней существует экстремум функции двух переменных, находим частные производные второго порядка

Шаг 4. Обозначим частные производные второго порядка :

 И составляем определитель

 

 Шаг 5

Находим определитель и проверяем достаточный признак существования экстремума:

Если , то экстремума в найденной критической точке нет,

если , то экстремум в найденной критической точке есть,

если , то требуются дополнительные исследования.

Если экстремум в найденной точке есть и если , то в этой точке существует минимум функции двух переменных, если , то максимум.

Шаг 6. Подставляем значения критической точки, в которой найден экстремум, в исходную функцию двух переменных и получаем значение экстремума функции двух переменных (минимума или максимума).

Пример 1. Найти экстремумы функции двух переменных .

Решение. Следуем изложенному выше алгоритму.

Шаг 1. Находим частные производные 1 порядка и .


.

Шаг 2. Составляем систему уравнений из равенств этих производных нулю:

Делим первое уравнение системы на 3, а второе на 6 и получаем

Из второго уравнения выражаем , подставляем в первое уравнение и получаем

Умножаем это уравнение на и получаем

.

Производим замену переменной: и получаем

.

Решаем полученное квадратное уравнение : .

Так как и , то

Таким образом, получили четыре критических точки - точки возможного экстремума.

Шаг 3. Находим частные производные второго порядка

И составляем определитель

Шаг 4. Находим определитель :

, т. е. экстремума в найденной критической точке нет,

, т. е. экстремума в найденной критической точке нет,

и , т. е. в найденной критической точке есть минимум функции двух переменных,

и , т. е. в найденной критической точке есть максимум функции двух переменных.

Шаг 5. Подставляем значения критической точки, в которой найден экстремум, в исходную функцию двух переменных и получаем значения экстремума функции двух переменных:

,

Пример 2. Найти экстремумы функции двух переменных .

Шаг 1. Находим частные производные:

.

Шаг 2. Составляем систему уравнений из равенств этих производных нулю:

Решаем систему уравнений:

Таким образом, получили критическую точку - точку возможного экстремума.

Шаг 3. Находим частные производные второго порядка

И составляем определитель

 

Шаг 4. Находим определитель , т. е. в найденной критической точке есть экстремум, причём так как , то это минимум.

Шаг 5. Подставляем значения критической точки, в которой найден экстремум, в исходную функцию двух переменных и получаем значение экстремума функции двух переменных:

.

Условный экстремум

Если возникает необходимость найти экстремумы функции нескольких переменных при условии, что существует связь между переменными этой связи, заданная уравнением . В этом случае говорят, что требуется найти условный экстремум.


Дата добавления: 2021-03-18; просмотров: 54; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!