ФУНКЦИЯ НАРУЖНОГО И СРЕДНЕГО УХА



Звукопроводящий аппарат является весьма совершенной механической системой. Она отвечает и на минимальные колебания воздуха, которые вызывают сдвиги барабанной перепонки величиной меньше диаметра молекулы и способна передавать также колебания, в миллиарды раз (в 1013 и более превышающие их пороговую силу. Наконец, эта система разлагает сложный звук на его компоненты (синусоидные колебания), т. е. производит первичный анализ его.

Основным путем доставки звуков к уху является воздушный. Подошедший звук колеблет барабанную перепонку, и далее через цепь слуховых косточек колебания передаются на овальное окно. Одновременно возникают и колебания воздуха барабанной полости, которые передаются на мембрану круглого окна. Но так как давление на овальное окно превышает давление на круглое окно, то подножная пластинка в фазе сгущения вдавливается внутрь преддверия лабиринта, а мембрана круглого окна выпячивается в сторону барабанной полости.

Другим путем доставки звуков к улитке является тканевая или костная проводимость. При этом звук непосредственно действует на поверхность черепа, вызывая его колебания.

Костный путь передачи звуков приобретает большое значение, если вибрирующий предмет (например, ножка камертона) соприкасается с черепом, а также при заболеваниях системы среднего уха, когда нарушается передача звуков через цепь слуховых косточек.

Ушная раковина является до известной степени коллектором звуковых волн и имеет значение для ототопики (в частности, при определении направления звуков, идущих спереди или сзади).

Слуховой проход имеет форму трубки, благодаря чему он является хорошим проводником звуков в глубину. Некоторую роль при этом играет и хрящевая проводимость как ушной раковины, так и самого слухового прохода.

Ширина и форма слухового прохода не оказывают существенного влияния на звукопроведение. Об этом свидетельствует тот факт, что при наличии серной пробки в слуховом проходе слух заметно снижается только при полной закупорке его просвета. Извилистость наружного слухового прохода и высокая чувствительность его кожи способствует защите его от механических и термических факторов.

Благодаря конусовидной форме, неодинаковому натяжению отдельных частей и отягощению системой косточек барабанная перепонка не обладает, собственным резонансом и без искажений передает звуковые колебания на овальное окно.

Роль барабанной перепонки и слуховых косточек состоит в том, что благодаря им воздушные колебания большой амплитуды и относительно малой силы трансформируются в колебания ушной лимфы с относительно малой амплитудой, но большим давлением.

Это достигается, во-первых, тем, что площадь подножной пластинки стремени (3 мм2) примерно в 20-25 раз меньше площади барабанной перепонки, и поэтому энергия, принимаемая пластинкой стремени, концентрируется на меньшей поверхности; во-вторых, благодаря рычажному механизму функционирования слуховых косточек сила, передаваемая на ушную лимфу, увеличивается еще примерно в 2 раза. Таким образом, коэффициент трансформации будет равняться 50-60. По новейшим данным этот коэффициент равен 20-25, что объясняется тем, что только часть барабанной перепонки активно участвует при колебаниях.

При отсутствии этого трансформирующего приспособления звуковая волна, подойдя к лабиринтной стенке, почти полностью отражалась бы обратно и величина давления на лимфу была бы очень небольшой.

Давление стремени передается на несжимаемую ушную лимфу. Передвижение столба жидкости в улитке происходит благодаря податливости мембраны круглого окна, которая при давлении на овальное окно выпячивается в полость среднего уха, а при обратном движении стремени выгибается в полость улитки.

Водопровод улитки, периневральные и периваскулярные пространства нервов и сосудов внутреннего уха очень узки и в значительной степени заполнены элементами соединительной ткани; поэтому они, по-видимому, не имеют большого значения для сдвига лимфы под влиянием звуков.

Таким образом, чем большей податливостью обладает мембрана круглого окна, тем более выгодным это оказывается для раздражения рецептора.

Долгое время шли споры о функции круглого окна. Некоторые авторы считали, что затруднение подвижности круглого окна (например, при помощи трансплантата) или отягощение его (ватным шариком) усиливают слух. Однако более точные опыты показали, что ухудшение подвижности мембраны круглого окна всегда понижает остроту слуха, но экранирование его приводит к обострению слуха. В опытах на кошках Т. Н. Мильштейн удалось уложить трансплантат на нишу круглого окна таким образом, что между его мембраной и трансплантатом оказалась воздушная подушка. При этом улучшался слух, так как трансплантат экранировал круглое окно от воздушных волн, а податливость его мембраны не уменьшалась.

Благодаря связкам цепь слуховых косточек подвижно подвешена к стенкам барабанной полости и может совершать движения в разных направлениях. Точные измерения показали, что колебания цепи косточек совершаются преимущественно кнутри и кнаружи. При движении внутрь рукоятки молоточка такое же движение производит и длинный отросток наковальни. Подножная пластинка, однако, не совершает поршнеобразных движений кнутри и кнаружи, а скорее качается наподобие колокола около оси, образуемой утолщенной частью lig. annulare, которая занимает нижне-задний полюс овального окна.

При не слишком интенсивных звуках движение цепи косточек совершается как одно целое (без смещения в суставах между наковальней и молоточком).

В результате действия очень сильных звуков (порог боли и давления) движение в суставе между молоточком и наковальней тормозится, а подножная пластинка начинает производить вращательное движение вокруг длинной оси овального окна. Благодаря этому величина смещения лимфы уменьшается, т. е. в этих случаях действует защитный механизм. Таким образом, действие системы косточек в нормальных условиях усиливает доставку звуков к овальному окну (механизм концентрации и рычагов), при чрезмерных же звуках они (косточки) осуществляют защитную функцию: во-первых, в силу рассмотренных выше механических свойств, во-вторых, благодаря функции слуховых мышц, прикрепляющихся к слуховым косточкам.

При сокращении слуховых мышц цепь слуховых косточек делается менее подвижной, что нарушает нормальную звукопередачу и уменьшает передвижение ушной лимфы. При сильных звуках (примерно 60 дб выше порога) мышцы приходят в тетаническое сокращение. Латентный период рефлекса очень короткий, примерно 15-50 мс, причем максимальное сокращение наступает уже через 1/10 сек. Поэтому быстрота их действия может быть сравниваема с быстротой мигательного рефлекса. Таким образом, основная функция слуховых мышц состоит в защите уха от чрезмерно интенсивных звуков. Порог раздражения для басовых звуков у стременной мышцы понижен в сравнении с порогом m. tensor tympani.

При сокращении слуховых мышц чувствительность уха для басовых звуков падает на 30-40 дб; на восприятие дискантовых звуков сокращение мышц столь заметным образом не влияет; следовательно, благодаря этому рефлексу осуществляется защита уха от интенсивных басовых звуков. Так, например, при выпадении функции стременной мышцы (при параличах n. facialis) наблюдается болезненное восприятие сильных звуков (oxyocoia).

По мнению ряда авторов, при прислушивании происходит некоторое увеличение тонуса этих мышц, что приводит цепь косточек в наивыгоднейшее положение для передачи ничтожно малых колебаний. Косвенно это подтверждается наблюдениями В. Е. Перекалина, который при параличе лицевого нерва и бездействии стременной мышцы находил некоторое ухудшение восприятия речи.

Поэтому можно допустить, что слуховые мышцы, кроме основной защитной функции, выполняют и аккомодационную функцию, обеспечивая наиболее выгодное натяжение отдельных элементов звукопроводящей системы среднего уха.

Важным условием для правильной работы звукопроводящей системы является отсутствие различия в давлении по обе стороны барабанной перепонки. При понижении или повышении давления как в барабанной полости, так и в слуховом проходе натяжение барабанной перепонки меняется, акустическое сопротивление повышается и слух падает. В норме обычное атмосферное давление в барабанной полости обеспечивается вентиляционной функцией евстахиевой трубы. При глотании и зевании труба открывается и делается проходимой для воздуха. Повышение атмосферного давления в носоглотке (при помощи продувания уха, опыта Вальсальвы) способствует восстановлению давления в среднем ухе.

Кроме воздушного пути, проведения звуковых волн существует тканевый, или костный, путь.

Под влиянием воздушных звуковых колебаний, а также при соприкосновении вибраторов (например, костного телефона или костного камертона) с покровами головы кости черепа приходят в колебание (начинает колебаться и костный лабиринт).

На основании последних данных (Бекеши — Bekesy и др.) можно допустить, что звуки, распространяющиеся по костям черепа, только в том случае возбуждают кортиев орган, если они, аналогично воздушным волнам, вызывают выгибание определенного участка основной мембраны. Существенное значение имеют два типа костной проводимости.

1. Инерционный тип костной проводимости. Полагают, что под влиянием звуковых волн весь череп совершает колебательные движения. Так как цепь слуховых косточек обладает известной инерцией и очень легкой смещаемостью, то при перемещениях головы она несколько от них отстает, и таким образом осуществляется относительное перемещение подножной пластинки стремени по отношению к рамке овального окна. При таком механизме костной проводимости подвижность обоих окон так же необходима, как и при воздушной проводимости. Инерционный механизм костной проводимости играет большую роль при передаче по костям басовых звуков, так как при воздействии относительно медленных колебаний с большой амплитудой череп колеблется как одно целое.

2. Компрессионный тип костной проводимости имеет место при воздействии высоких звуков.

Под влиянием высоких звуков череп начинает колебаться отдельными сегментами, которые испытывают то сжатие, то ослабление давления. Такому же периодическому сжатию и ослаблению компрессии подвергается и лабиринтная капсула. В фазе сжатия лимфа испытывает давление со всех сторон и выпячивает мембраны обоих окон. Если бы они обладали одинаковым акустическим сопротивлением и одинаковой податливостью, то в равной степени выпячивались бы в сторону барабанной полости. В этом случае никакого изгиба основной перепонки не получалось бы, так как она испытывала бы одинаковое давление с обеих сторон. На самом же деле мембрана круглого окна гораздо податливее подножной пластинки (примерно в 7-8 раз), и поэтому она выпячивается гораздо больше, чем подножная пластинка. Очевидно, что в этом случае основная перепонка прогнется в сторону барабанной лестницы.

Этот механизм костной проводимости представляет большой интерес, так как он резко отличается от механизма воздушной проводимости. Основное значение здесь имеет не общая подвижность закрывающих окна образований, а различие в их подвижности. Поэтому фиксация одного из них (например, анкилоз стремени) даже способствует компрессионному механизму костной проводимости. Этим и объясняется резкое различие в порогах воздушной и костной проводимости при отосклерозе.

Сложные явления, наблюдаемые при костной аудиометрии, всегда должны рассматриваться с учетом этих двух механизмов. Обычно они действуют оба, но удельный вес каждого зависит от высоты и силы подаваемого звука, а также от изменений в звукопроводящем аппарате, в особенности от состояния окон.

ФУНКЦИЯ ВНУТРЕННЕГО УХА

Наиболее сложные процессы происходят во внутреннем ухе. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения, непосредственное изучение которых затрудняется малой величиной колебаний, а также тем, что они скрыты от исследователя плотной капсулой лабиринта. Еще большие трудности возникают при изучении явлений, имеющих место при трансформации механической энергии в процесс нервного возбуждения в рецепторе, а также при изучении функции нервных проводников и центров. Разрешение этих вопросов находится в настоящее время еще в стадии накопления фактов, а пока для объяснения происходящих во внутреннем ухе процессов мы пользуемся предложенными в различное время гипотезами.

Любая теория слуха должна в первую очередь объяснить способность уха различать высоту, силу и тембр звуков. Кроме того, она должна достаточно удовлетворительно объяснить законы маскировки, ототопики и другие особенности функций звукового анализатора.

В 1863 г. Гельмгольц предложил резонансную теорию. Он считал, что в улитке происходят явления механического резонанса, в результате которого сложные звуки в ней разлагаются на простые тоны. То обстоятельство, что основная мембрана с ее эластическими волокнами, натянутыми в поперечном направлении, имеет разную ширину у основания и верхушки улитки (у основания — узкая, у верхушки — широкая), позволило Гельмгольцу считать ее образованием, разные участки которого способны резонировать на звуки неодинаковой высоты.

Теория Гельмгольца с гениальной простотой разъяснила основные свойства уха, т. е. определение высоты, силы и тембра. Согласно резонансной теории, любой чистый тон имеет свой ограниченный участок на основной мембране.

Одиночный звук, по его мнению, раздражает строго определенные нервные волокна — именно те, которые снабжают соответствующий участок мембраны, и раздражение этих волокон ощущается как звук строго определенной высоты.

Резонансной теорией легко объясняется различение тембра звука и способность уха разлагать сложный звук на его составные части. Каждый сложный звук, согласно этой теории, раздражает столько точек на основной мембране, сколько в нем содержится синусоид, т. е. основной тон и все обертоны вызывают соколебание в соответствующих участках мембраны. Все сигналы из внутреннего уха, дошедшие по системе проводников до слуховых центров, интегрируются в них, и мы слышим соответственный тембровый звук. Сила звука определяется числом раздражаемых нервных элементов. Естественно, чем сильнее звук, тем более широкий участок основной мембраны приходит в соколебание. Гельмгольц допускал резонанс отдельных участков мембраны, но не говорил о резонансе свободно колеблющихся струн. Таким образом, из теории Гельмгольца следует три основных вывода:

1) в улитке происходит первичный анализ звуков;

2) каждый простой звук имеет свой участок на основной мембране;

3) низкие звуки вызывают колебание участков основной мембраны у верхушки улитки, а высокие — у основания ее.

Несмотря на огромное количество новых фактов, полученных при изучении функции внутреннего уха, эти три вывода сохраняют свое значение до настоящего времени.

Первый вывод вполне гармонирует с учением И. П. Павлова о способности к первичному анализу как концевых приборов афферентных нервов, так и в особенности сложных рецепторных аппаратов. Подтверждением вывода о пространственной локализации звуков в улитке явились опыты, предпринятые Л. А. Андреевым. Он вырабатывал у собак слюнной условный рефлекс на ряд тонов. После полного разрушения лабиринта одного уха он изолированно разрушал то основание, то верхушку улитки другого уха и обнаруживал выпадение условного рефлекса слюноотделения то на высокие, то на низкие тоны. Этим было доказано, что в улитке имеет место первичный анализ звуков.

Все работы последнего времени направлены скорее не на отрицание резонансной теории слуха, а на дальнейшее ее углубление и развитие. Новые наблюдения говорят в пользу того, что под влиянием звуков в лимфе улитки происходят сложные гидродинамические процессы и деформации мембран в улитке зависят от них не в меньшей степени, чем от механических свойств самой основной перепонки (Бекеши, Флетчер). При быстрых колебаниях подножной пластинки относительно большая инерция столба лимфы в обеих лестницах не позволяет ему следовать за быстрыми колебаниями стремени. Это обстоятельство и возрастающее трение в scala vestibuli при быстрых колебаниях ведут к такому повышению давления в этом канале, что рейснерова мембрана, а вслед за ней и основная мембрана прогибаются и колебание передается дальше на лимфу барабанной лестницы и на мембрану круглого окна. Чем выше звук, тем ближе к круглому окну (т. е. основанию) получается прогиб основной перепонки. Самые низкие звуки вызывают деформацию ее у верхушки, т. е. поблизости от геликотремы.

Таким образом, за основу для слуховых теорий в настоящее время принимается теория пространственного расположения (place theory) звуков, согласно которой любому тону соответствует определенный участок на основной мембране.

Как видно из изложенного выше, новейшие теории объясняют избирательное отношение основной мембраны к звукам разной высоты не столько механическими свойствами этой мембраны, ее резонансом, сколько сложными явлениями в ушной лимфе, среди которых главное место занимает перемещение ее столба в улитковых ходах. Это перемещение лимфы передается податливым перепончатым образованием, которые деформируются на большем или меньшем протяжении.

Новейшие опыты Бекеши на моделях и на улитке морской свинки действительно показали, что основная мембрана совершает сложные колебания — при высоких звуках волны деформации захватывают главным образом основные завитки, при низких — всю мембрану. Места максимальной деформации соответствует пространственному расположению звуков на основной перепонке, в этих участках наблюдались вихревые движения лимфы.

Следует сказать, что число нейроэпителиальных клеток и нервных волокон вполне допускает раздельное «расположение звуков» на основной мембране. Наблюдения за величиной разностного порога высоты показывают, что человеческое ухо может различать до 1500 градаций высоты (по всему диапазону частот). Тогда на каждый чистый тон пришлось бы до 20 волосковых клеток. На всей основной мембране (длиной около 33 мм) располагалось бы всего 1500 разделенных друг от друга дискретных точек, т. е. каждый соседний тон отстоял бы от другого на 33:1500, примерно на 0,02 мм.

Трудности доказательства правильности пространственной теории возникают потому, что все перечисленные выше наблюдения не дают основания утверждать, что под влиянием чистого звука возникает изолированное раздражение столь малого по протяженности участка — в 0,02 мм. Приходится считаться с воздействием каждого тона на гораздо большем протяжении основной мембраны с максимальной деформацией ее в определенной точке. При этом трудно объяснить, почему ощущается только один тон, так как раздражаются и рядом лежащие участки кортиева органа.

Для объяснения этих фактов приходится пользоваться гипотезами, затрагивающими механизм трансформации механической энергии в нервное возбуждение.

Бекеши, Флетчер и др. допускают, что ощущение высоты возникает благодаря раздражению тех нервных приборов, которые расположены в точке максимального изгиба перепонки; нервные же процессы волосковых клеток, находящихся рядом, при этом тормозятся (эффект контраста).

Другое затруднение состоит в том, что с механической точки зрения (т. е. одной только степенью деформации) невозможно объяснить огромное (в миллионы раз) различие чувствительности уха к разным частотам.

Это затруднение отпадает, если допустить, как это делает П. П. Лазарев, что при механическом раздражении волосковых клеток в них возникает химическая реакция, сила которой зависит от количества разлагающегося вещества (слухового пурпура). При этом освобождаются ионы, которые и вызывают процесс нервного возбуждения.

По новейшим данным, в волосковых клетках всегда имеются запасы гликогена, количество которого уменьшается под влиянием звуковой нагрузки (Я. А. Винников).

О глубоких химических изменениях в спиральном ганглии после сильного звукового воздействия сообщают Хиден, Хамбергер и Нильсон (Hyden, Hamberger, Nilsson). При помощи цитохимического способа и фотографирования в лучах коротковолнового спектра (2670 А) они обнаружили уменьшение содержания рибонуклеиновой кислоты и протеина в ганглиозных клетках, в то время как липоидные фракции клеток количественно оказались неизмененными. Роль медиатора в кортиевом органе играет ацетилхолин (Гиссельсон — Giesselson).

Большой интерес представляет мнение А. А. Ухтомского о том, что явления физического резонанса должны быть дополнены «физиологическим резонансом клеток». Так как одной из основных характеристик нервных клеток является их физиологическая лабильность, то можно допустить, что звуковое давление определенной частоты вызывает максимальный ответ в той клетке, физиологическая лабильность которой резонирует на эту частоту. Таким образом, теория А. А. Ухтомского лишь дополняет остальные, так как не отрицает тех механических явлений, которые имеются в улитке.

Ввиду тех затруднений, которые оказались не вполне объяснимыми пространственной теорией, некоторые авторы (Уивер — Wever, Pебул — Reboul и др.) допускают, что различение высоты определяется двумя факторами — фактором пространственного расположения рецепторных образований и фактором времени, т. е. числом импульсов в секунду. Последнее вполне правдоподобно для частот до 700-1000 Гц, так как такой ритм в неискаженном виде обнаруживается в проводниковой системе. Правильная передача частот нарушается при более высоких звуках, поэтому для них пространственный фактор играет преобладающую роль.

Успехи электрофизиологии органов чувств дают некоторые новые данные о процессах, совершающихся в нервных проводниках и корковых центрах соответствующих анализаторов.

При действии звука в улитке возникают электрические потенциалы — микрофонные токи улитки.

Улитковые (микрофонные) токи повторяют сложную кривую звуковой волны как в отношении амплитуды, так и частоты колебаний до 10 000 Гц и выше. Они возникают в районе основной мембраны, мало изменяются от действия наркотических веществ, при утомлении и улавливаются лучше всего в тех точках, куда благодаря электропроводности тканей они легко проникают. Например, высокочастотные токи особенно хорошо отводятся с мембраны круглого окна.

Микрофонные токи улитки нельзя смешивать с акционными токами, возникающими в нервных образованиях при их возбуждении. При отведении потенциалов с круглого окна всегда получается смесь микрофонных токов и акционных токов слуховых волокон. По времени микрофонные токи улитки возникают несколько раньше, чем акционные токи со слуховых волокон. Токи действия волокон слухового нерва очень чувствительны к действию наркотиков, холода и расстройству кровообращения; при раздражении слухового нерва обнаруживается рефрактерная фаза, т. е. одиночные волокна его передают не больше 500-800 импульсов в секунду. Таким образом, частота нервных импульсов в волокнах слухового нерва не является повторением частоты звуковых колебаний, а представляет собой информацию о различных качествах звука, которая окончательно расшифровывается в корковых концах звукового анализатора.

На основании последних микроэлектрофизиологических исследований рецепции, проведенных Гранитом (Granit), можно думать, что потенциал улитки служит, подобно синаптическим потенциалам мышц, сетчатки и т. д., своего рода генераторным потенциалом.

Токи, обнаруживаемые в центральных проводниках, уже не похожи на токи улитки. С удалением от кортиева органа частота их уменьшается и время возникновения все больше и больше запаздывает.

В подкорковых ядрах звукового анализатора формируется в грубой форме восприятие звука — животное, лишенное коры, реагирует лишь на звуки большой интенсивности. И только в корковом ядре (или конце) звукового анализатора возникает звуковое ощущение, соответствующее сигнальному значению слышимого звука. Корковый отдел не только принимает и анализирует информацию, поступающую из внутреннего уха, но имеет и обратную, эфферентную связь с улиткой, через посредство которой осуществляется регулирующая, настраивающая роль коры в отношении улитки (Ресмуссен, Г. В. Гершуни).

 

 


Дата добавления: 2021-03-18; просмотров: 57; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!