Фазы и структурные составляющие железоуглеродистых сплавов



Материаловедение

Материаловедение – наука, которая изучает связь между составом, строением и свойствами материалов.

Классификация материалов

Применяемые в народном хозяйстве материалы можно условно разделить на 2 группы:

- металлы и металлические сплавы – черные и цветные

- неметаллы

Металлы – материалы, для которых характерны высокая теплопроводность, высокая электропроводность, непрозрачность, металлический блеск, способность к пластической деформации и другие свойства.

Металлические сплавы – вещества, которые образуются при взаимодействии двух и более металлов или металлов с некоторыми неметаллами.

Группа металлов и металлических сплавов в свою очередь включает в себя черные и цветные металлы и сплавы.

К черным металлам относят железо (Fe) и сплавы на его основе (чугун, сталь, ферросплавы). Подавляющее большинство всех конструкционных и инструментальных материалов изготовлены из сплавов на основе железа.

К цветным металлам относят остальные металлы: медь (Cu), алюминий (Al), никель (Ni), олово (Sn), титан (Ti), магний (Mg), золото (Au), серебро (Ag) и др.

Цветные металлы обладают рядом свойств, которые делают их незаменимыми в технике.

Золото используется в электронике, хромом покрывают металлические изделия в защитных целях, из меди делают электрические провода.

К неметаллам относят такие материалы как пластмасса, резина, каучук, стекло и керамика и т.д.

Эти материалы характеризуются хорошей хиической стойкостью, диэлектрическими свойствами, малой плотностью (то есть они легче металлов) и другими специфическими свойствами.

Строение металлов и сплавов.

Все металлы и сплавы в твердом состоянии имеют кристаллическое строение с определенным расположением атомов.

Дефекты кристаллического строения можно разделить на:

- точечные

- линейные

- поверхностные

К точечным дефектам относятся вакансии и межузельные атомы

К линейным дефектам относят дислокации

Поверхностные дефекты представляют собой границы раздела между отдельными кристаллами или их блоками.

Свойства металлов и сплавов:

Механические свойства

К основным механическим свойства относят:

- прочность

- пластичность

- твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.

Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.

Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:

- цвет

- плотность

- температуру плавления

- теплопроводность

- электропроводность

- магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.

Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.

Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:

- коррозионную стойкость

- жаростойкость

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:

- емкости для перевозки химических реактивов

- трубопроводы химических веществ

- приборы и инструменты в химической промышленности

Фазы и структурные составляющие железоуглеродистых сплавов

Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое железо – металл серебристо-белого цвета с температурой плавления в 1539 °С. Железо имеет две полиморфные модификации: альфа (альфа) и гамма (гамма) . Модификация альфа существует при температурах ниже 911 °С и выше 1392 °С; гамма-железо – при температуре 911-1392 °С. В зависимости от температуры и концентрации углерода в железоуглеродистых сплавах (сталях и чугунах) образуются следующие твердые фазы: феррит, аустенит, цементит, графит.

1. Феррит (Ф) – твердый раствор внедрения углерода в альфа-железе.

Альфа-железо имеет ОЦК структуру, которая стабильна до 911 °С. Наибольшая растворимость углерода в альфа-железе – 0,02% при 727 °С. С понижением температуры снижается и растворимость углерода, и при комнатной температуре она составляет 0,005% по массе. По этой причине феррит называют технически чистым железом, он имеет незначительную твердость (HB = 80-100) и прочность (предел прочности предел прочностив = 250 МПа), но высокую пластичность (относительное удлинение относительное удлинение до 50%, относительное сужение относительное сужение до 80%).

При температуре от 1392 °С до 1539 °С железо также имеет ОЦК структуру - это дельта-железо. Твердый раствор внедрения углерода в дельта-железе называют высокотемпературным ферритом.

2. Аустенит (А) – твердый раствор внедрения углерода в гамма-железе.

Аустенит имеет ГЦК структуру. В железоуглеродистых сплавах аустенит может существовать только при высоких температурах. В гамма-железе углерод растворяется значительно лучше, чем в альфа-железе, максимальная растворимость углерода в гамма-железе составляет 2,14% и наблюдается при температуре 1147 °С. С пониженим температуры растворимость углерода снижается - до 0,8% при 727 °С. Аустенит имеет твердость HB = 160-200 и весьма пластичен (относительное удлинение 40-50%), наблюдается в сталях при температурах от 727 °С.

3. Цементит (Ц) – химическое соединение железа с углеродом (карбид железа Fe3C). В цементите содержится 6,67% углерода. Температура плавления цементита около 1600 °С. Он очень тверд (HB порядка 800 единиц), хрупок и практически не обладает пластичностью. Выделяют цементит первичный, вторичный и третичный. Их отличия заключаются в происхождении:

- первичный цементит образуется из жидкого расплава при кристаллизации железоуглеродистых сплавов (линия СD),

- вторичный цементит выпадает из аустенита (по причине уменьшения растворимости углерода в аустените с понижением температуры - линия SE)

- третичный цементит выпадает из феррита с понижением температуры (по причине снижения растворимости углерода в феррите с понижением температуры - линия PQ)

Цементит - неустойчивая метастабильная фаза. При нагреве и длительной выдержке цементит распадается на феррит (альфа-железо) и графит (Fe3C -> 3Fe + C).

4. Графит – чистый углерод с гексагональной слоистой структурой. Графит очень мягок (HB = 3) и обладает низкой прочностью. В чугунах и графитизированной стали содержится в виде включений различных форм (пластинчатой, хлопьевидной, шаровидной). С изменением формы графитовых включений меняются механические и технологические свойства сплава.

Помимо четырех вышеназванных фаз в струтуре сплавов железа с углеродом выделяют еще две самостоятельные структурные составляющие: перлит и ледебурит.

5. Перлит (П) – механическая смесь феррита и цементита, содержащая 0,8% углерода.

Перлит образуется из аустенита при охлаждении его до температуры ниже 727 °С. Таким образом, перлит является эвтектоидом. Перлит может быть пластинчатым и зернистым (глобулярным), что зависит от формы цементита и определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет предел прочности 800 МПа, относительное удлинение 15%, твердость HB = 160.

6. Ледебурит (Л) – механическая смесь аустенита и цементита (Л = А+ Ц), содержащая 4,3% углерода.

Ледебурит образуется из жидкого расплава при температуре 1147 °С. Таким образом, ледебурит по своей сути является эвтектикой. Ледебурит образуется при затвердевании жидкого расплава при 1147 °С. Ледебурит имеет твердость HB = 600-700 HB и большую хрупкость. Ледебурит наблюдается в структуре чугунов, в сталях он образовывается только при большом количестве легирующих элементов и содержании углерода более 0,7%.

При охлаждении ледебурита до температуры в 727 °С входящий в его состав аустенит становится неустойчивым и распадается, превращаясь в перлит. Таким образом, при температуре менее 727 °С вплоть до 20 °С ледебурит представляет собой механическую смесь перлита с цементитом.

Помимо перечисленных структурных составляющих, в железоуглеродистых сплавах могут быть нежелательные неметаллические включения: окислы, нитриды, сульфиды, фосфиды – соединения с кислородом, азотом, серой и фосфором.

 


Дата добавления: 2021-01-21; просмотров: 71; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!