Пример. Найдите решение нер-ва



Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

х2 – 7x< 23

x2– 7x– 8 < 0

Получили неравенство второй степени, такие мы уже решать умеем. Напомним, что сначала надо решить ур-ние

x2– 7x– 8 = 0

D = b2– 4ac = (– 7)2 – 4•1•(– 8) = 49 + 32 = 81

х1 = (7 – 9)/2 = – 1

х2 = (7 + 9)/2 = 8

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x2– 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Ответ: (– 1; 8).

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

7 – х3< (1 – х)3

7 – х3< 1 – 3x + 3x2– х3

2 – 3х – 6 > 0

x2– х – 2 > 0

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

x2– х – 2 = 0

D = b2– 4ac = (– 1)2 – 4•1•(– 2) = 1 + 8 = 9

х1 = (1 – 3)/2 = – 1

х2 = (1 + 3)/2 = 2

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

Ответ: (– ∞; – 1)⋃(2; + ∞).

Если в нер-ве

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

2х – 5 <(4 – х)2

2х – 5 < 16 – 8х + х2

х2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

2х – 5 ⩽ 0

2x⩽5

x⩽ 2,5

Во-вторых, выражение 4 – х не может быть отрицательным:

4 – х ⩾ 0

х ⩽ 4

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ответ: [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не «<», то есть оно имеет вид

Его тоже можно решить аналитически, однако мы для простоты рассмотрим только графическое решение.

Пример. Найдите решение нер-ва

Решение. Построим графики обеих частей:

Видно, что в какой-то точке графики пересекаются, после чего график корня будет лежать выше прямой у = 2 – х. Осталось найти точное значение точки, для чего можно составить ур-ние:

Корни квадратного ур-ния найдем через дискриминант:

Мы убедились, что иррациональные ур-ния и нер-ва являются довольно сложными. Для разных задач приходится использовать разные, не всегда стандартные методы решений. Зачем же их вообще надо решать? Оказывается, они часто возникают при геометрических расчетах. В частности, уравнение, описывающее зависимость расстояния между двумя точками от их координат, является иррациональным. Поэтому при решении многих физических задач, связанных с движением объектов в пространстве, возникает необходимость решать иррациональные ур-ния.

 


Дата добавления: 2020-11-15; просмотров: 58; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!