Динамические модели: понятие, виды



Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

- среду и механизм подачи на него этих воздействий

- объект должен иметь протяженность в пространств

- функционировать во времени

- в модели должны быть измерительные устройства.

Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот источник: например в классической механике это выражается принципом, сформулированном в третьем законе Ньютона: действие равно противодействию, в электротехнике напряжение источника есть результат установления динамического равновесия между источником и нагрузкой. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

По существу, все элементы динамического объекта являются двунаправленными, как и сам объект по отношению к внешним объектам. Это следует из обобщения третьего закона Ньютона, сформулированного им для механики: сила противодействия тела равна силе воздействия на него другим телом и направлена навстречу ей, а в химии также формулируется в виде принципа Ле Шателье. Обобщая можно сказать: воздействие одного динамического элемента на другой встречает противодействие некоторого вида. Например, электрическая нагрузка источника напряжения противодействует ему током, изменяя значение напряжения на выходе источника. В общем случае противодействие нагрузки влияет на режим работы источника, и их поведение определяется в результате, если это возможно, переходом в некоторое динамическое равновесие.

Во многих случаях мощность источника воздействия значительно больше потребной входной мощности приемника, каковым является динамический объект. В этом случае динамический объект практически не влияет на режим работы источника (генератора) и связь может рассматриваться как однонаправленная от источника к объекту. Такая однонаправленная модель элемента, основывающаяся на рациональном физическом структурировании объекта, существенно упрощает описание и анализ системы. Собственно, многие технические объекты, хотя и далеко не все же, строятся как раз по такому принципу, в частности при проектировании систем для решения задач управления. В других случаях, например при решении задачи, когда требуется получение максимального кпд двигателя, противодействием пренебречь нельзя.

Детализируя структуру динамического объекта можно придти к элементарным, условно не упрощаемым объектам. Такие объекты описываются простейшими алгебраическими и дифференциальными уравнениями. Фактически такие элементы в свою очередь могут иметь сложную структуру, однако удобнее при моделировании воспринимать их как единое целое, свойства которого определяются этими, сравнительно простыми уравнениями, связывающими реакцию с воздействием.

Физические модели

Так называют увеличенное или уменьшенное описание объекта или системы. Отличительная характеристика физической модели состоит в том, что в некотором смысле она выглядит как моделируемая целостность.

Наиболее известным примером физической модели является копия конструируемого самолета, выполненная с полным соблюдением пропорций, скажем 1:50. На одном из этапов разработки самолета новой конструкции возникает необходимость проверить его основные аэродинамические параметры. С этой целью подготовленную копию продувают в специальной (аэродинамической) трубе, а полученные показания затем тщательно исследуют. Выгодность такого подхода совершенно очевидна. И потому все ведущие самолетостроительные компании используют физические модели подобного рода при разработке каждого нового летательного аппарата.

Часто в аэродинамическую трубу помещают уменьшенные копии многоэтажных зданий, имитируя при этом розу ветров, характерную для той местности, где предполагается их строительство. Пользуются физическими моделями и в кораблестроении.

Математические модели

Так называют модели, использующие для описания свойств и характеристик объекта или события математические символы и методы. Если некоторую проблему удается перенести на язык формул, то она сильно упрощается. Математический подход прост еще и потому, что он подчиняется вполне определенным жестким правилам, которые нельзя отменить указом или иным способом. Сложность нашей жизни как раз и состоит в том, что многое, что в ней случается, нередко свободно от условностей. Математика имеет дело с упрощенным описанием явлений. По существу, любая формула (или совокупность формул) представляет собой определенный этап в построении математической модели. Опыт показывает, что построить модель (написать уравнение) довольно легко. Трудно в этой модельной и следовательно, упрощенной форме суметь передать суть изучаемого явления.

Любой функциональный элемент реального объекта имеет свою структуру, его можно, как и весь объект, мысленно или физически разделить на взаимодействующие элементы. Элементарный динамический объект это рационально выбранный элемент реального объекта, условно считающийся неделимым, обладающий, как целое некоторым фундаментальным свойством, например инерцией, и с достаточной степенью точности описываемый простейшим алгебраическим или дифференциальным уравнением.

Важнейшее, фундаментальное свойство динамических объектов это их инерционность. Физически инерционность выражается в том, что объект не сразу, а постепенно реагирует на внешние воздействия, а в отсутствие внешнего воздействия стремится сохранить свое состояние и поведение. Математически инерция выражается в том, что выходная величина реального объекта является непрерывной во времени величиной. Более того, некоторые младшие производные выходной величины тоже должны быть непрерывными, они не могут изменяться скачком при ограниченных по мощности воздействиях, в том числе и изменяющихся скачком, ступенчато во времени.

Простейшие инерционные динамические объекты - кинедины. Это элементарные объекты, мысленно или физически вычленяемые из структуры сложного объекта и с достаточной степенью точности подчиняющиеся простейшим дифференциальным уравнениям различных порядков. Такие модели состоятельны, по крайней мере, в некоторой пространственно-временной области и в ограниченном диапазоне величин сигналов.

Математическое описание инерции динамического объекта, объекта, соответствующего некоторому дифференциальному уравнению, состоит в том, что воздействие сказывается на реакции объекта опосредовано, оно непосредственно влияет на ту или иную производную реакции по времени, или сразу на несколько из них. Это и приводит к тому, что реакция проявляется только с течением времени.

И действительно, такое описание соответствует поведению реальных объектов. Например, при мгновенной подаче некоторого, сравнительно малого, не меняющегося после подачи воздействия на элементарный объект второго порядка, например силы на инерционную массу, объект остается некоторое, пусть малое, время в том же состоянии, что и до подачи, имеет ту же скорость, что и ранее.

Но вторая производная, т.е. ускорение, прыгает скачком, пропорционально величине приложенной силы. И, поэтому, только с течением времени, а не сразу, наличие второй производной проявляется в изменении скорости, а следовательно, в последующем, и на положении тела в пространстве.

Аналоговые модели

Так называют модели, представляющие исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой.

Приведем два достаточно характерных примера.

Пример 1. График, иллюстрирующий соотношения между затраченными усилиями и результатами, является аналоговой моделью. График на рис. 1.1 показывает, как количество времени, отведенное студентом на подготовку к экзамену, влияет на его результат.

Рис. 1.1. График, иллюстрирующий соотношения между затраченными усилиями и результатами

Пример 2. Предположим, что нужно найти наиболее экономичный способ для регулярных известных поставок товаров в три города, построив для этого только один склад. Основное требование: место для склада должно быть таким, чтобы полные транспортные расходы были наименьшими (считается, что стоимость каждой перевозки равна произведению расстояния от склада до пункта назначения на общий вес перевозимых товаров и измеряется в тонна-километрах).

Наклеим карту местности на лист фанеры. Затем в месте нахождения каждого города пропилим сквозные отверстия, пропустим через них нити и привяжем к ним грузики, пропорциональные запросам товаров в этот город (рис. 1.2). Свяжем свободные концы нитей в один узел и отпустим. Под действием силы тяжести система придет в состояние равновесия. То место на листе фанеры, которое при этом займет узел, и будет соответствовать оптимальному расположению склада (рис. 1.3).

Замечание. Стоимость дорог, которые придется построить заново, мы для простоты рассуждений в расчет не принимаем.

Рис. 1.2. Карта местности на листе фанеры

Рис. 1.3. Оптимальное расположение склада


Дата добавления: 2020-11-15; просмотров: 465; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!