Проводниковый и центральный отделы зрительного анализатора.



Проводниковый и центральный отделы зрительного анализатора. Проводниковый отдел начинается в сетчатке (Атл., 100). Нейриты ее ганглиозных клеток складываются в зрительные нервы, которые, войдя через зрительные каналы в полость черепа, образуют перекрест. У низших позвоночных (амфибий, рептилий) в перекресте участвуют все волокна зрительных нервов, поэтому движения левого и правого глаза независимы, поля их зрения разделены, зрение монокулярно. У обезьян и человека перекрещивается около половины волокон зрительных нервов. Это обеспечивает согласованные движения глазных яблок и бинокулярное зрение. После перекреста каждый нерв, называемый теперь зрительным путем, огибает ножку мозга и разделяется на два корешка. Один из них заканчивается в верхнем двухолмии. Его волокна идут к ниже расположенным эффекторным ядрам ствола, благодаря чему осуществляются рефлекторные ответы на зрительные раздражения (например, непроизвольные движения головы и глаз), а также к подушке зрительного бугра. Другой корешок направляется к латеральному коленчатому телу. В подушке и латеральном коленчатом теле зрительные импульсы переключаются на следующий нейрон, волокна которого в составе зрительной лучистости идут к коре затылочной области больших полушарий.
Центральным полем ядерной зоны зрительного анализатора служит поле 17; волокна зрительной лучистости проецируются и на расположенные спереди периферические поля 18 и 19 и др. Для полного анализа и синтеза предмета (его величины, расстояния от глаз и т. д.) к ощущениям от раздражения сетчатки прибавляются ощущения от раздражения проприорецепторов аккомодационных мышц ресничного тела, мышц, суживающих и расширяющих зрачок.

37. Оптическая система глаза.

Возрастные особенности и этапы развития зрительной системы у детей.

39. Физические харак-ки света…

Раздел физики, занимающийся изучением методики и техники измерения параметров источников света, потоков световой энергии и их проявлений, называется фотометрией. Ниже приведены основные фотометрические величины.
Лучистый поток – количество энергии, переносимой излучением через какую-либо поверхность в единицу времени
Единица измерения – ватт (Вт), измерить его можно по времени и количеству теплоты, которое получит тело при полном поглощении излучения.
Световой поток – часть лучистого потока, которая вызывает зрительные ощущения и характеризует мощность видимой части спектра излучения. Единица измерения – люмен (лм), является технической характеристикой осветительных приборов. Полный световой поток в случае точечного источника
Сила света – отношение светового потока F к величине телесного угла Ω, из которого он выходит
Единица измерения – кандела (кд), основная величина системы СИ.
Освещенность – отношение светового потока, падающего на элемент площади, к величине этой площади
Является нормируемой величиной, единица измерения – люкс (лк),1 лк = 1 лм/1 м2.
Закон Ламберта: освещенность поверхности от точечного источника света прямо пропорциональна косинусу угла его падения и обратно пропорциональна квадрату расстояния от источника
Зависимостью освещенности от угла падения объясняется смена времен года на Земле. Освещенность предметов имеет большое значение в производственной деятельности: точные работы требуют освещенности 100 лк, чтение – 30...50 лк. Освещенность прямыми лучами Солнца в летний день может достигать 100 000 лк, полная Луна создает освещенность порядка 0,2 лк.

Яркость – отношение силы света элемента поверхности в заданном направлении к площади проекции на данное направление
Единица измерения – нит (нт), причем 1 нт = 1 кд/1 м2. Яркость входит в число гигиенических норм освещенности рабочих мест.

Световосприятие.
Светоощущение является функцией палочкового аппарата сетчатки. Это способность глаза к восприятию света и различению степеней его яркости.
Светоощущение считается наиболее чувствительной функцией органа зрения, изменения которой раньше, чем изменения других функций, выявляют при различных патологических процессах, и они, таким образом, служат ранними критериями Диагностики многих заболеваний (глаукома, поражения ЦНС, болезни печени, гиповитаминозы, авитаминозы и т. д.). Светоощущение является первой, самой древней функцией световоспринимающих клеток и органов. У человека при наступлении слепоты светоощущение в сравнении с другими функциями глаза исчезает в последнюю очередь.
Световосприятие (чувствительность глаза к свету) индивидуально и в каждом конкретном случае находится в прямой зависимости от состояния сетчатки и концентрации в ней светочувствительного вещества. Кроме того, оно определяется общим состоянием зрительно-нервного аппарата, в первую очередь уровнем возбудимости нервной ткани.
Принято различать абсолютную светочувствительность, характеризующуюся порогом раздражения, или, другими словами, порогом восприятия света, и различительную светочувствительность, характеризующуюся порогом различения, т. е. порогом восприятия предельной (минимальной) разницы яркости света между двумя освещенными объектами, что позволяет отличать их от окружающего фона. При этом и порог раздражения, и порог различения обратно пропорциональны степени светоощущения, т. е. чем меньше воспринимаемый глазом минимум света или улавливаемая разница в его яркости, тем выше световая чувствительность. Фотореценторы сетчатки глаз'а человека возбуждаются уже при наличии 1 кванта света, но ощущение света возникает только при наличии 5—8 квантов света.
Следует уточнить, что, для того чтобы сетчатка была способна даже к самому малому световосприятию, длина волны световых лучей, исходящих от объекта, должна обязательно находиться в пределах видимого излучения и, кроме того, продолжительность и интенсивность раздражения, а также величина объекта должны быть доступны для их восприятия сетчаткой.
Способность глаза проявлять световую чувствительность при различной освещенности называется адаптацией. Именно эта функция органа зрения позволяет сохранять высокую светочувствительность и одновременно предохранять фоторецепторы сетчатки от перенапряжения.
Принято различать световую адаптацию, определяющую максимальное количество света, воспринимаемого глазом, и темновую, или так называемую абсолютную, адаптацию, определяющую соответственно минимум воспринимаемого глазом света. Длительность обоих видов адаптации глаза во многом зависит от уровня предшествующей освещенности. Когда глаз адаптируется к возросшей яркости света (световая адаптация), чувствительность фоторецепторов сетчатки особенно интенсивно снижается в первые секунды и достигает нормальных значений к концу 1-й минуты.
При переходе в условия пониженной освещенности зрительный анализатор нуждается в темповой адаптации. Световая чувствительность фоторецепторов относительно быстро увеличивается, через 20—30 мин процесс замедляется, и лишь спустя 50—60 мин адаптация достигает своего максимума.
Простым методом исследования световой чувствительности является проба Кравкова, основанная на феномене Пуркинье, который заключается в том, что в условиях пониженной освещенности происходит перемещение максимума яркости цветов от красной части спектра к сине-фиолетовой. Днем красный мак и синий василек кажутся одинаково яркими, а в сумерках мак становится почти черным, а василек воспринимается как светло-серое пятно.
Для проведения пробы Кравкова — Пуркинье на углы квадрата размером 20 х 20 см, сделанного из черного картона, наклеивают 4 квадратика размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. В затемненной комнате эти цветные квадратики показывают пациенту на расстоянии 40—50 см от его глаза. В норме через 30—40 с обследуемый различает желтый, а затем голубой квадраты. При нарушении светоощу-щения вместо желтого квадрата пациент видит светлое пятно, а голубой квадрат вообще не выявляет.
Более точное определение светочувствительности производят на регистрирующем полуавтоматическом адаптометре. Исследование выполняют в темноте, длительность его 50—60 мин. Сначала обследуемый максимально адаптируется к свету. В течение 10 мин он смотрит на освещенный экран, а затем погружается в полную темноту. Пациенту предъявляется слабо освещенный тест, яркость которого постепенно увеличивается. Когда обследуемый различит тест, он нажимает на кнопку. На бланке регистрирующего устройства ставится точка. Яркость теста изменяют сначала через 2—3 мин, а затем с интервалом 5 мин. По прошествии 60 мин исследование заканчивают. Соединив точки на регистрационном бланке, исследователь получает кривую световой чувствительности обследуемого.
Наиболее частыми расстройствами сумеречного зрения считаются симптоматическая и функциональная гемералопия (от греч. hemera — днем, aloos — слепой, ops — глаз). В народе это состояние получило название "куриная слепота" по образу и подобию зрения дневных птиц, не видящих в темноте.
Причиной симптоматической гемералопии являются поражения фоторецеиторов сетчатки, нередко сопровождающие различные органические заболевания сосудистой оболочки, сетчатки и зрительного нерва (глаукома, невриты зрительного нерва и пигментные дегенерации сетчатки). Функциональная гемералопия считается характерным симптомом гиповитаминоза Аив большинстве случаев клинически проявляется развитием ксеротических бляшек на конъюнктиве у лимба. Эта форма заболевания хорошо поддается лечению витаминами А и группы В. Иногда гемералопия имеет характер врожденного семейно-наследственного заболевания неясной этиологии, при котором изменения на глазном дне отсутствуют.

Механизмы зрения
Визуальные анализаторные системы человека - это сложные многоуровневые образования, служащие для анализа оптических сигналов. То, что воспринимается зрением, есть результат взаимодействия сенсорных и двигательных механизмов глаза и центральной нервной системы, поскольку как произвольные, так и непроизвольные движения глаз и головы заставляют изображение смещаться каждые 200 ... 600 мс. Мозг создает целостную картину из последовательности дискретных изображений. Движения, изменяющие направления взгля­да, устанавливают глаз в такое положение, при котором изображение попадает в ту точку сетчатки, где острота зрения максимальна. Крупный объ­ект сканируется глазом за счет резких скачков - саккад, амплитудой от нескольких угловых минут до 90о, и скоростью до 500о/с. Применительно к мелким объектам характерны микросаккады, частотой  20 ... 150 Гц и амплитудой в несколько угловых минут. В то же время, при сканировании быстродвижущихся объектов (со скоростью более 80о/с) глаз отстает, и изображение «размывается», т.е. не попадает в область максимальной остроты зрения. (В этом случае, в дело вступает движение головы, что характерно, например, для зрителей на автогонках).
Зрительная система организована по явно выраженному иерархическому принципу. Ее основными уро­внями являются: фоторецепторы сетчатки глаза, зрительный нерв, область пересечения зрительных нервов (хиазма), зрительный канатик (место выхода зрительного пути из области хиазмы), а также нервные пути к зрительной коре головного мозга.
Сетчатка глаза представляет собой очень сложный орган. Ее рецепторный слой содержит два типа рецепторов:  6 106 колбочек (образующих аппарат дневного, фотопического зрения) и  120 106 палочек (относящихся к аппарату сумеречного, скотопического зрения). Количество колбочек и палочек неравномерно распределено в различных областях сетчатки; колбочек значительно больше в ее центральной части - центральной ямке и желтом пятне - зоне максимально ясного зрения. Здесь палочки отсутствуют, они распределены вокруг ямки. Желтое пятно несколько сдвинуто в сто­рону от места выхода зрительного нерва - эта зона, где рецепторов нет, называется слепым пятном. Геометрические особенности распределения цветового зрения по элементам сетчатки были впервые опубликованы в 1894 г. в работе А. Кенига. Он установил, что различение цвета зависит от углового размера объекта. Так, при угле большем 10’ объект представляется полноцветным, при угле (4,5 … 10)’ - двухцветным (ора­н­же­во-голубым), а при угле еще меньшем - ахроматическим (черно-белым).
Человек относится к числу так называемых «фрон­тальных» млекопитающих, у которых зрительные поля (области, воспринимаемые каж­дой сетчаткой отдельно) пе­рекрываются. Это позволяет человеку выполнять точные манипуляции руками под контролем зрения, а также обеспечить точность и глубину видения (стереоскопическое или бинокулярное зрение). Бинокулярное зрение характеризует возможность совмещения образа объекта, возникающего в одной сетчатке, с образом объекта, возникающего в другой. Зона перекрытия зрительных полей обоих глаз соста­вляет  120о, в то время как зона монокулярного видения составляет  30о для каждого глаза (име­нно такой угол зрения имеет глаз, относительно его це­н­­тральной точки). Визуальная информация передается в головной мозг по зрительному нерву, состоящему из  1 106 аксонов. Зрительные волокна, идущие от носовых половин сетчаток пересекаются в хиазме и переходят на противоположную часть зрительной коры, волокна же височных областей не пересекаются. Следовательно, участки сетчатки, расположенные к носу от средней линии (нозальные отделы), участвуют в механизмах бинокулярного зрения, а участки, расположенные в височных отделах (тем­поральные отделы) – монокулярного
Одно время считалось, что механизмы стереоскопии обу­сло­влены исключительно параллаксом, т.е. разностью углов зре­ния левого и правого глаза. Однако, хотя действительно расстояние одним глазом оценивается менее точ­но, чем двумя, утрата этой способности не так существенна, как в случае пространственного слуха. В настоящее время полагают, что восприятие глубины пространства за­висит также от ряда дополнительных факторов, в том числе зрительного опыта. Изображение объекта проецируется на сетчатку справа от центральной ямки в левом глазу и слева от нее в правом. Это позволяет при бинокулярном зрении создать неперекрещивающиеся двойные изображения. Их наложение осу­ществляется в так называемом циклопическом глазе, во­ображаемом органе, в который проецируются сетчатки правого и левого глаза (рис. В.7). Установлено, что изображение не будет двоиться, если объект находится в области гороптера.- кри­волинейной поверхности, на которой лежат узловые точки обоих глаз и точка фиксации. Бинокулярное зрение у людей не является врожденным и формируется в результате опыта в возрасте 8 … 27 недель


Дата добавления: 2020-04-25; просмотров: 107; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!