Изоферменты. Множественные формы ферментов.



Изоферменты – это множественные формы фермента, катализирующие одни и те же реакции, но отличающиеся по физическим и химическим свойствам (сродство к субстрату, скорость катализируемой реакции, электрофоретическая подвижность, различная чувствительность к ингибиторам и активаторам, термостабильность, оптимум рН).

Изоферменты — это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

· Органные — ферменты гликолиза в печени и мышцах.

· Клеточные — малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

· Гибридные — ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа — 4 субъединицы 2 типов).

· Мутантные — образуются в результате единичной мутации гена.

· Аллоферменты — кодируются разными аллелями одного и того же гена.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ) – фермент, катализирующий обратимую реакцию. Этот фермент существует в виде 5 изоформ, каждая из которых состоит из 4 субъединиц двух типов (М и Н). Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1– 4Н; ЛДГ2– 3Н1М; ЛДГ3– 2Н2М;ЛДГ4– 1Н3М; ЛДГ5 – 4М. Полипептидные цепи Н- и М-типа имеют одинаковую молекулярную массу, но в составе первых преобладают дикарбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

В процессе индивидуального развития организма происходит изменение содержания изоформ в той или иной ткани. У зародыша преобладают ЛДГ4 и ЛДГ5. После рождения происходит изменение содержания изоформ в некоторых тканях. В миокарде, надпочечниках, где доминирует аэробный обмен, преобладают ЛДГ1 и ЛДГ2. В тканях, где сохранился анаэробный обмен, преобладают ЛДГ4 и ЛДГ5 (скелетная мускулатура, печень).

Множественные формы ферментов. Это ферменты, которые катализируют одинаковые реакции, но отличаются по физико- химическим свойствам. По происхождению можно выделить две группы таких ферментов: а) изоферменты — это ферменты, в которых различия генетически детерминированы; б) множественные формы, образующиеся в результате модификации молекул фермента после его синтеза. Термин «множественные формы фермента» применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент» применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности). Одним из наиболее изученных 4 ферментов, множественность форм которого детально изучена методом гель-электрофореза, является ЛДГ, катализирующая обратимое превращение пировиноградной кислоты в молочную. Пять изоферментов ЛДГ образуются из 4 субъединиц примерно одинакового размера, но двух разных типов. Поскольку Н-протомеры несут более выраженный отрицательный заряд при рН 7,0–9,0, чем М-про-томеры, изофермент, состоящий из 4 субъединиц Н-типа (Н4), при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М4, в то время как остальные изо-ферменты будут занимать промежуточные позиции. Следует подчеркнуть, что изоферменты ЛДГ, обладая почти одинаковой ферментативной активностью, различаются некоторыми физико-химическими свойствами: молекулярной массой, электрофоретической подвижностью, отношением к активаторам и ингибиторам и др., однако для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает Н4, т.е. ЛДГ1 , а в скелетных мышцах и печени – М4 (ЛДГ5) (рис. 4.6). Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) всыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

Мультиферментные комплексы.

Наиболее эффективно происходит регуляция в мульти- ферментных комплексах. Эти комплексы представляют собой несколько ферментов, катализирующих ряд согласованных реакций, причем конечные продукты одной ферментативной реакции являются исходными субстратами для следующей ферментативной реакции. Различают три типа мультиферментных комплексов:

• ферменты растворены в цитоплазме и контакт субстратов с ними осуществляется посредством диффузии;

• ферменты соединены друг с другом за счет белок-белковых взаимодействий;

• ферменты соединены друг с другом и иммобилизованы на внутриклеточных или цитоплазматических мембранах.

В каждом мультиферментном комплексе имеется, по крайней мере, один аллостерический фермент, осуществляющий регуляцию суммарной реакции всего ферментного ансамбля. Чаще всего этот фермент катализирует скорость первой (самой медленной) реакции, а его отрицательным модулятором является конечный продукт всего процесса в целом.

Ниже представлена схема, изображающая мультиферментную систему, в которой продукт последней реакции является отрицательным эффектором аллостерического фермента Е,:

Мультиферментные системы могут включать в себя до 20 различных ферментов, функционирующих в определенной последовательности.

Многие мультиферментные комплексы, функционируют на разных этапах метаболизма. Одним из таких комплексов является совокупность ферментов, катализирующих синтез пиримидинов из ас- партата в бактериальных клетках. Аллостерическим ферментом в данном случае является аспартат-карбомоилаза, катализирующая первую стадию процесса, а именно превращение аспартата в карбомоиласпартат.

Регуляция ферментативной активности может осуществляться за счет ограниченного протеолиза. Многие протеиназы, функционирующие вне клеток, например в крови или в пищеварительном тракте, синтезируются в виде неактивных предшественников. Активация их связана с гидролизом некоторых пептидных связей в полипептидной цепи (ферменты свертывания крови, ферменты пищеварительного тракта,- трипсин и химотрипсин)

Регуляция ферментативной активности может осуществляться за счет ковалентной обратимой модификации новосинтезированных белковых макромолекул. Это связано в первую очередь с ферментативным присоединением к ним низкомолекулярных химических группировок в результате фосфорилирования, гликозилирования, метилирования и т. д. Присоединение фосфатной группы к гидроксилу аминокислотного остатка полипептидной цепи может как увеличить, так и снизить ферментативную активность. Примером тому может служить гликогенфосфорилаза — фермент, катализирующий отщепление остатков глюкозы от гликогена. В исходном состоянии он неактивен, но при фосфорилировании, осуществляемом посредством фермента протеинкиназы, происходит его активация и вовлечение в процесс метаболизма глюкозы. Напротив, фермент гликогенсинтаза активен в исходном состоянии, а при фосфорилировании его активность резко снижается.

!!!Эффективным инструментом регуляции каталитической активности является молекулярная гетерогенность ферментов, обусловленная как генетическими, так и эпигенетическими факторами.!!!

В настоящее время около половины идентифицированных ферментов находятся в клетках и тканях в виде множественных молекулярных форм, имеющих единую субстратную специфичность, но отличающихся по физико-химическим или иммунологическим свойствам. Генетическая основа молекулярной гетерогенности обусловлена наличием нескольких генов, каждый из которых кодирует одну субъединицу фермента или одну его молекулярную форму. Кроме того, различные молекулярные формы одного и того же фермента могут кодироваться в одном генном локусе, имеющем множественные аллели. Генетически детерминированные молекулярные формы называются изоэнзимами. Посттрансляционные модификации ферментов, обусловленные локальным протеолизом, ковалентными модификациями, белок-белковыми взаимодействиями и т. д., являются причиной образования множественных молекулярных форм, не являющихся истинными изоэнзимами, но играющими существенную роль в метаболических процессах. Наиболее часто встречаются так называемые конформеры — молекулярные формы, имеющие одинаковую первичную структуру, но отличающиеся по своей конформации. Это возможно в том случае, если эти конформации достаточно устойчивы, т. е. соответствуют уровню свободной энергии, близкой к минимальной. Только такие конформационные варианты белков, которые воспроизводимо фиксируются посредством электрофоретических, хроматографических или иных методов, могут рассматриваться как конформеры.


Дата добавления: 2019-11-16; просмотров: 2470; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!