Станок токарно-револьверный HAAS CT-25.



Практическая работа № 9-10

Тема: Выбор и расчет режимов резания по таблицам, (для токарной обработки наружных цилиндрических и торцевых поверхностей, канавок проточек).

План проведения работы:

1. Получить чертеж детали у преподавателя.

2. Определить последовательность обработки детали.

3. Для каждого перехода по справочникам подобрать режущий инструмент и определить режимы резания.

4. Определить способы закрепления заготовки.

5. Для каждой установки по справочникам подобрать необходимую оснастку.

6. Отчет должен содержать обоснования выбранной оснастки и соответствие ее режиму обработки.

7. Для одного из переходов написать управляющею программу.

8. Отчет должен содержать обоснования выбранных режимов резания и текст управляющей программы.

 

 

                   

 

 

 

                          Практическую работу составил: Лебединов А.А (Учащийся 23гр.)

                          Практическую работу проверил: Овасапян Д.К (Преподаватель)

Содержание

 

1 Технические, химические, механические характеристики заготовки согласно чертежу 4095.50.032. 3

2 Цементация изделий из стали 12ХН3А в кипящем слое. 4

3 Габариты заготовки. 7

4 Оборудования. 8

5 Последовательность обработки детали. 9

6 Определение способа закрепление заготовки. 9

7 Подборка режущего инструмента. 10

8 Оснастка. 11

9 Определить режимы резания, 12

Режим точения. 12

10 Управляющие программы.. 13

11 Вывод по написанию управляющей программы согласно чертежу 4095.50.032. 21

12 Вывод по выбранным режимам резания. 21

13 Вывод по обоснованию выбранной оснастки и соответствие ее режиму обработки. 22

Приложение 1. 23

Приложения 2. 24

 

 

  

 

 

 

Технические, химические, механические характеристики заготовки согласно чертежу 4095.50.032.

 

 

Согласно ГОСТУ 4543 что указан на чертеже детали «Сфера» диаметр заготовки может составлять до 250мм, длинна прутка по согласованию с заказчиком от 2-6метров, получение заготовки сортовой прокат.

 

Марка: 12ХН3А (заменители: 12ХН2, 20ХН3А, 25ХГТ, 12Х2Н4А, 20ХНР)

Расшифровка стали: Сталь 12ХН3А содержит в среднем 0,12% углерода, Х - указывает содержание хрома в стали примерно 1%, Н3 - указывает содержание никеля в стали около 3%, буква А в конце марки означает, что сталь относится к категории высококачественной.

Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, ГОСТ 10702-78. Калиброванный пруток: ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78. Шлифованный пруток и серебрянка: ГОСТ 14955-77. Полоса: ГОСТ 103-2006 . Поковки и кованный заготовки: ГОСТ 1133-71. Трубы : ГОСТ 21729-76, ГОСТ 8734-75, ГОСТ 9567-75.

Класс: Сталь конструкционная легированная

Использование в промышленности: шестерни, валы, червяки, кулачковые муфты, поршневые пальцы и другие цементуемые детали, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок или при отрицательных температурах до -100 °С .

Химический состав:

Si          0,17 - 0,37
Mn 0,3-0,6
Ni 2,75 - 3,15
S до 0,025
P до 0,025
Cr 0,6 - 0,9
Cu до 0,3
Fe ~95
C 0,09 - 0,16

Свойства:

Удельный вес: 7850 кг/м3

Температура ковки, °С: начала 1220, конца 800. Сечения до 100 мм охлаждаются на воздухе, 101-300 мм в яме.

Термообработка: Закалка и отпуск

Твердость материала: HB 10 -1 = 217 МПа

Температура критических точек: Ac1 = 715 , Ac3(Acm) = 773 , Ar3(Arcm) = 726 , Ar1 = 659 , Mn = 380

Обрабатываемость резанием: в горячекатаном состоянии при HB 183-187, К υ тв. спл=1,26 и Кυ б.ст=0,95

Свариваемость материала: ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом.

Флокеночувствительность: чувствительна.

Склонность к отпускной хрупкости: склонна.

 

Цементация изделий из стали 12ХН3А в кипящем слое.

 

На образцах из сталей 12ХН3А и 18Х2Н4ВА, цементированных по оптимальному режиму, были исследованы режимы дальнейшей термической обработки в целях создания полного цикла обработки в кипящем слое. По существующей технологии детали из этих сталей подвергают после цементации высокому отпуску, закалке и низкому отпуску.

Были изучены: 1) непосредственная закалка с цементационного нагрева в холодный (20° С) кипящий слой; 2) закалка в холодный кипящий слой с предварительным подстуживанием от температуры цементации 950 до 800° С; 3) закалка как отдельная операция после высокого отпуска.

Первые два режима не дали положительных результатов вследствие недопустимо большого количества остаточного аустенита: по первому режиму 70-75 и 16-18%, а по второму 19-25 и 7-9% соответственно для сталей 18Х2Н4ВА и 12ХНЗА. Поэтому более подробно был исследован третий режим.

Отпуск образцов стали 18Х2Н4ВА после цементации при 950° С в кипящем слое (4 ч) и керосином в печи Ц-105 (12 ч) проводили при 650° С в трех различных средах одинаковыми партиями по 30 шт.: в электропечи, в кипящем слое (на полупромышленной установке Турбомоторного завода) и в свинцовой ванне. Исследовали количество остаточного аустенита (на магнитометре Штейнберга), ударную вязкость и твердость в зависимости от времени выдержки. Распределение углерода после цементации в обоих случаях было практически одинаковым. С увеличением времени выдержки количество остаточного аустенита понижается, причем наиболее интенсивно в первые три часа отпуска. Ударная вязкость незначительно повышается, а твердость вначале несколько увеличивается в связи С распадом остаточного аустенита, а затем снижается. При повторном отпуске твердость, так же как и количество остаточного аустенита, снижаются с увеличением времени отпуска.

Наиболее интересные данные получены при изучении влияния среды отпуска на количество остаточного аустенита. После отпуска в кипящем слое количество аустенита такое же, как и после отпуска в свинцовой ванне, и приблизительно вдвое меньше, чем после отпуска в электропечи.

Сталь 18Х2Н4ВА после цементации в кипящем слое и высокого отпуска при 650° С в течение 3 ч в кипящем слое и в электропечи. Охлаждение осуществляли после отпуска на воздухе. Остаточный аустенит при отпуске в кипящем слое претерпевает больший распад, чем при отпуске в электропечи.

Более интенсивный распад остаточного аустенита после отпуска в кипящем слое по сравнению с отпуском в электропечи можно объяснить скоростным нагревом. Как и при нагреве в свинце, напряженное состояние, характеризуемое дефектами кристаллического строения, в процессе нагрева сохраняется до более высоких температур, чем при нагреве в электропечи. Дефекты кристаллической решетки служат зародышевыми центрами для выделения карбидной фазы, которых в случае скоростного нагрева в кипящем слое и в свинце больше, чем при нагреве в электропечи. В процессе отпуска в кипящем слое выделяется больше карбидов, что обедняет остаточный аустенит углеродом. Это вызывает повышение мартенситной точки и более полный распад остаточного аустенита при последующем охлаждении. Кроме того, при скоростном нагреве не успевают завершиться процессы перераспределения легирующих элементов. В частности, никель, не входящий в состав карбидов, сосредоточивается при медленном нагреве в твердом растворе, и, обогащенный никелем остаточный аустенит характеризуется большей устойчивостью, чем при быстром нагреве в кипящем слое.

 Сравнительные эксперименты показали, что при охлаждении отпущенных образцов на воздухе количество остаточного аустенита оказывается на 20-30% меньше, чем при охлаждении в масле. Быстрое охлаждение в масле ведет к мартенситному превращению части обедненного остаточного аустенита, которое в свою очередь не идет до конца, в то время как замедленное охлаждение на воздухе стимулирует развитие бейнитного превращения, протекающего полнее, чем мартенситное.

По полученным данным был выбран режим высокого отпуска в кипящем слое при 650° С в течение трех часов с последующим охлаждением на воздухе.

После отпуска детали нагревали до 820° С в электропечи (2 ч) или в кипящем слое (20 мин) и закаливали как в холодный кипящий слой частиц корунда 120 мкм, так и в масло. Предварительно были сняты термограммы охлаждения шестерен двух различных размеров (с толщиной стенки или полуразностью наружного и внутреннего диаметров 18 и 30 мм). В диапазоне температур 820-250° С шестерня охлаждается в масле несколько быстрее, чем в кипящем слое, а при более низких температурах - медленнее. Время охлаждения до 220-250° С в обеих средах одинаково и для меньшей и большей шестерен равно соответственно 1,5 и 2,5 мин. Твердость и структуру после закалки изучали непосредственно на шестернях. Механические свойства сталей 18Х2Н4ВА и 12ХНЗА определяли на образцах длиной 170 мм диаметром соответственно 25 и 21 мм, прошедших весь описанный выше цикл термообработки. При закалке по исследованным четырем вариантам они оказались практически одинаковыми. Количество остаточного аустенита при нагреве в кипящем слое было меньше, чем при нагреве в электропечи, а при одинаковых условиях нагрева закалка в кипящем слое давала меньше остаточного аустенита, чем закалка в масле. Структура после закалки в кипящем слое и масле была практически одинаковой: цементированный слой состоит из мелкоигольчатого мартенсита, карбидов и остаточного аустенита, а сердцевина - из перлита и феррита (сталь 12ХН3А) или бейнита (сталь 18Х2Н4ВА).

В результате был выбран наиболее быстрый вариант закалки, дающий к тому же наименьшее количество остаточного аустенита: нагрев в кипящем слое до 820° С с выдержкой (общее время 20 мин) и охлаждение в холодном кипящем слое (10 мин).

В заключение проведено сравнение результатов испытаний цементированной стали 12ХН3А на износостойкость, статическую прочность при растяжении и усталость после цементации и последующей термообработки в кипящем слое с результатами термической обработки по существующей технологии.

Процесс термообработки был выполнен в трех вариантах.

I. Существующая технология: цементация (930° С, 10 ч) - - охлаждение на воздухе - высокий отпуск (650° С, 9 ч) - закалка (800° С, 2 ч) низкий отпуск (170° С, 3 ч).

II. В кипящем слое: цементация (950° С, 2,5 ч) - закалка с подстуживанием - низкотемпературный отпуск (170° С, 2 ч).

III. В кипящем слое: цементация (950° С, 2,5 ч) - охлаждение на воздухе - высокий отпуск (650° С, 3 ч) - закалка (820° С, 1/3 ч) - низкий отпуск (170° С, 2 ч).

Износостойкость испытывали на машине МИ-1М (цикл 15 000 оборотов) при трении качения с проскальзыванием без смазки при удельном давлении в месте контакта испытуемой пары 39 кгс/мм2, соответствующем удельному давлению в зубьях шестерен дизеля и скорости вращения эталонов 320 и 400 об/мин. Потеря массы образцов составила 581-647 мг, 466-483 мг и 430-461 мг соответственно при обработке по I, II и III вариантам. Таким образом, наилучшим оказался вариант III.

Статическую прочность стали испытывали на образцах рабочим диаметром 8 мм с глубокими кольцевыми концентраторами напряжений гиперболического профиля. Радиус разреза меняли от 0,18 до 7 мм, что соответствовало широкому диапазону коэффициентов концентрации напряжений ао от 1,0 до 6,04. Видно, что среднее значение ов по вариантам I и III практически одинаково, однако вариант III предпочтительнее, поскольку при такой обработке в отличие от обработки по существующей технологии σв почти не зависит от ао.

Усталостную прочность стали 12ХНЗА испытывали на машине МВП-10 000 при чистом изгибе с вращением, частоте 83 Гц и базе испытаний 5.106 циклов. Испытания выполняли на 75 аналогичных образцах, режимы I и III дают одинаковые и несколько лучшие результаты, чем режим II.

По результатам указанных испытаний для промышленной эксплуатации может быть рекомендован следующий оптимальный режим цементации и последующей термообработки деталей из сталей 18ХНВА и 12ХН3А: цементация при ав = 0,26-0,28 с добавкой 15% природного газа при 950° С, 2,5 (10) ч - охлаждение на воздухе - высокий отпуск, 650° С, 3 (9) ч - охлаждение на воздухе - нагрев под закалку до 820° С в кипящем слое и выдержка 20 мин (2 ч) - охлаждение в кипящем слое - низкий отпуск в кипящем слое 170° С, 2 (3) ч. Применение кипящего слоя позволяет сократить полный цикл обработки втрое, т. е. с 24 до 8 ч, получив такие же прочностные показатели. При этом глубина цементированного слоя составляет 1,1-1,4 мм, а поверхностная концентрация углерода (с учетом его перераспределения при охлаждении и высоком отпуске) 0,9-1,0% С.

Габариты заготовки.

     

  

 

 

    Изготовление на заводе                                             На производство путем реза

    (по договоренности с заказчиком)                            на равные части.

     на основание ГОСТа 4543-71         

 

 

                                            

Оборудования.

        

Станок токарно-револьверный HAAS CT-25.

Технические характеристики:

Макс. устанавливаемый диаметр над станиной 806мм.
Макс. устанавливаемый диаметр над кареткой 527мм
Макс. обрабатываемый диаметр (зависит от револьвера) 330мм
Макс. длинна обработки (без патрона) 533мм
Диаметр 3-х кулачкового патрона 254мм
Макс. диаметр обрабатываемого прутка 76мм
Диаметр отверстия в шпинделе 88,9мм
Макс. частота вращения шпинделя 3400об/мин
Максимальный крутящий момент 407Нм
Максимальная мощность шпинделя 22,4кВт
Перемещение по оси Х 236мм
Перемещение по оси Z 533мм
Макс. осевое усилие 22,7кН
Макс. скорость холостых подач 24м/мин
Исполнение посадочного гнезда револьвера VDI40
Количество инструментальных гнезд в револьвере 12 шт.
Макс. количество приводных станций 12шт.
Макс. скорость вращения приводного инструмента 6000об/мин
Конус пиноли задней бабки №4
Точность позиционирование =0,0050мм
Повторяемость =0,0025
Объём бака СОЖ 208л
Ориентировочная масса станка (зависит от комплектации) 5580кг

                          


Дата добавления: 2020-01-07; просмотров: 46;